hosted by
publicationslist.org
    

Shane A Heine

Washington University in St Louis
St Louis, MO 63110

Journal articles

2010
Shane A Heine, Stephen M Highstein, Pablo M Blazquez (2010)  Golgi cells operate as state-specific temporal filters at the input stage of the cerebellar cortex.   J Neurosci 30: 50. 17004-17014 Dec  
Abstract: Cerebellar processing of incoming information begins at the synapse between mossy fibers and granule cells, a synapse that is strongly controlled through Golgi cell inhibition. Thus, Golgi cells are uniquely positioned to control the flow of information into the cerebellar cortex and understanding their responses during behavior is essential to understanding cerebellar function. Here we show, for the first time, that Golgi cells express a unique oculomotor-related signal that can be used to provide state- and time-specific filtering of granule cell activity. We used newly established criteria to identify the unique electrophysiological signature of Golgi cells and recorded these neurons in the squirrel monkey ventral paraflocculus during oculomotor behaviors. We found that they carry eye movement, but not vestibular or visual, information and that this eye movement information is only expressed within a specific range of eye positions for each neuron. In addition, simultaneous recordings of Golgi cells and nearby mossy fibers revealed that Golgi cells have the opposite directional tuning of the mossy fiber(s) that likely drive their responses, and that these responses are more sluggish than their mossy fiber counterparts. Because the mossy fiber inputs appear to convey the activity of burst-tonic neurons in the brainstem, Golgi cell responses reflect a time-filtered negative image of the motor command sent to the extraocular muscles. We suggest a role for Golgi cells in the construction of forward models of movement, commonly hypothesized as a major function of the cerebellar cortex in motor control.
Notes:
2009
Keiichiro Inagaki, Shane A Heiney, Pablo M Blazquez (2009)  Method for the construction and use of carbon fiber multibarrel electrodes for deep brain recordings in the alert animal.   J Neurosci Methods 178: 2. 255-262 Apr  
Abstract: Microiontophoresis of neuroactive substances during single unit recording in awake behaving animals can significantly advance our understanding of neural circuit function. Here, we present a detailed description of a method for constructing carbon fiber multibarrel electrodes suitable for delivering drugs while simultaneously recording single unit activity from deep structures, including brainstem nuclei and the cerebellum, in the awake behaving primate. We provide data that should aid in minimizing barrel resistance and the time required to fill long, thin multibarrel electrodes with solutions. We also show successful single unit recording from a variety of areas in the awake squirrel monkey central nervous system, including the vestibular nuclei, Interstitial Nucleus of Cajal, and the cerebellum. Our descriptions and data should be useful for investigators wishing to perform single unit recordings during microiontophoresis of neuroactive substances, particularly in deep structures of animals with chronically implanted recording chambers.
Notes:
2007
Pablo M Blazquez, Maria A Davis-Lopez de Carrizosa, Shane A Heiney, Stephen M Highstein (2007)  Neuronal substrates of motor learning in the velocity storage generated during optokinetic stimulation in the squirrel monkey.   J Neurophysiol 97: 2. 1114-1126 Feb  
Abstract: Chronic motor learning in the vestibuloocular reflex (VOR) results in changes in the gain of this reflex and in other eye movements intimately associated with VOR behavior, e.g., the velocity storage generated by optokinetic stimulation (OKN velocity storage). The aim of the present study was to identify the plastic sites responsible for the change in OKN velocity storage after chronic VOR motor learning. We studied the neuronal responses of vertical eye movement flocculus target neurons (FTNs) during the optokinetic after-nystagmus (OKAN) phase of the optokinetic response (OKR) before and after VOR motor learning. Our findings can be summarized as follows. 1) Chronic VOR motor learning changes the horizontal OKN velocity storage in parallel with changes in VOR gain, whereas the vertical OKN velocity storage is more complex, increasing with VOR gain increases, but not changing following VOR gain decreases. 2) FTNs contain an OKAN signal having opposite directional preferences after chronic high versus low gain learning, suggesting a change in the OKN velocity storage representation of FTNs. 3) Changes in the eye-velocity sensitivity of FTNs during OKAN are correlated with changes in the brain stem head-velocity sensitivity of the same neurons. And 4) these changes in eye-velocity sensitivity of FTNs during OKAN support the new behavior after high gain but not low gain learning. Thus we hypothesize that the changes observed in the OKN velocity storage behavior after chronic learning result from changes in brain stem pathways carrying head velocity and OKN velocity storage information, and that a parallel pathway to vertical FTNs changes its OKN velocity storage representation following low, but not high, gain VOR motor learning.
Notes:
2004
Y Kuki, Y Hirata, P M Blazquez, S A Heiney, S M Highstein (2004)  Memory retention of vestibuloocular reflex motor learning in squirrel monkeys.   Neuroreport 15: 6. 1007-1011 Apr  
Abstract: The vestibuloocular reflex (VOR) motor learning can be induced chronically by wearing lenses for several weeks to months, or acutely by visual-vestibular mismatch for several hours. Cerebellar long term depression (LTD) has been proposed as a causal mechanism for acute learning. We demonstrate differences in retention of acutely and chronically acquired VOR gains in squirrel monkeys and discuss neuronal correlates and possible roles of cerebellar LTD. Our data is compatible with the idea that cerebellar LTD might be a mechanism responsible for acute VOR adaptation.
Notes:
2003
Pablo M Blazquez, Yutaka Hirata, Shane A Heiney, Andrea M Green, Stephen M Highstein (2003)  Cerebellar signatures of vestibulo-ocular reflex motor learning.   J Neurosci 23: 30. 9742-9751 Oct  
Abstract: The vestibulo-ocular reflex (VOR) comprises an outstanding system to perform studies that probe possible cerebellar roles in motor learning. Novel VOR gains can be induced (learned) by the wearing of minifying or magnifying lenses, and learning requires the presence of the cerebellum. Previously, it was shown that Purkinje cells change their head velocity sensitivities with learning and that this change was thought to be inappropriate to be causal for the changed behavior. We now demonstrate that Purkinje cells also change their eye position, eye velocity, and head velocity sensitivities after learning. These combined changes at the Purkinje cell level contribute to a net modulation that is appropriate to support the new VOR gains. Importantly, the changes in the eye position parameter, reported for the first time, suggest the involvement of the neuronal integrator pathways in VOR learning. We provide evidence that all of these changes are necessary for VOR behavior and can explain learning deficits after cerebellar removal.
Notes:
Powered by PublicationsList.org.