hosted by
publicationslist.org
    

Shekhar Nath

Goto Laboratory,
Institute for Materials Research, Tohoku University,
Katahira 2-1-1, Aobaku, Sendai 980-8577, Japan.
TEL:+81-22-215-2106
FAX:+81-22-215-2107
shekhar.nath@gmail.com
Japanā€™s Society for Promotion of Science(JSPS) Post Doctorate Fellow
November, 2008- Continuing
At Institute for Materials Research, Tohoku University, Sendai, Japan, with Prof. Takashi Goto,
Project: Development of Bioceramic film.

Research Interest
Biomaterials, Ceramics, CVD, Composites, Sintering, Tribology

Journal articles

2011
Shekhar Nath, Ashutosh Kumar Dubey, Bikramjit Basu (2011)  Mechanical properties of novel calcium phosphate-mullite biocomposites.   J Biomater Appl Feb  
Abstract: Herein, the results of systematic mechanical property measurements of pressureless sintered calcium phosphate (CaP)-mullite composites are discussed. Our experimental results demonstrated how the mullite addition (upto 30 wt%) influenced hardness, elastic modulus, strength and toughness properties of the composites. In assessing each of these fundamental material properties, either a range of load or a number of complimentary techniques were used to obtain reliable measure of mechanical properties. Importantly, the results of single edge V notch beam measurements revealed that a reliable toughness value of ∼1.5 MPa m(0.5) could be obtained in composites containing 20 or 30 wt% mullite. Our results clearly illustrated that a combination of elastic modulus (∼80 GPa), compressive strength of more than 350 MPa, three-point flexural strength of 70-80 MPa, hardness of 4-5 GPa were achievable with the investigated composites. Such a combination of material properties, in addition to modest toughness property appeared to indicate that CaP-mullite composites could be used as a biomaterial for hard tissue replacement.
Notes:
Shekhar Nath, Sushma Kalmodia, Bikramjit Basu (2011)  In vitro biocompatibility of novel biphasic calcium phosphate-mullite composites.   J Biomater Appl Jul  
Abstract: In designing new calcium phosphate (CaP)-based composites, the improvement in physical properties (strength, toughness) without compromising the biocompatibility aspect is essential. In a recent study, it has been demonstrated that significant improvement in compressive strength as well as modest enhancement in toughness is achievable in biphasic calcium phosphate (BCP)-based composites with mullite addition (up to 30 wt%). Herein, we report the results of the in vitro cell adhesion, cell proliferation, alkaline phosphatase (ALP) activity, and osteocalcin (OC) production for a series of BCP-mullite (up to 30 wt%) composites. Mouse fibroblast (L929) cell lines were used to examine in vitro cell adhesion and cell proliferation; while osteoblast-like (osteosarcoma, MG63) cells were used for in vitro osteoblastic function study by ALP and OC expression. Much emphasis has been provided to discuss the cell viability and proliferation as well as osteoblastic differentiation marker on the investigated biocomposites in relation to the characteristics of the phase assemblage. On the basis of various observations using multiple biochemical assays, it has been suggested that BCP-mullite composites would be a candidate material for orthopedic applications.
Notes:
Richard A Martin, Zahira Jaffer, Garima Tripathi, Shekhar Nath, Mira Mohanty, Victoria Fitzgerald, Pierre Lagarde, Anne-Marie Flank, Artemis Stamboulis, Bikramjit Basu (2011)  An X-ray micro-fluorescence study to investigate the distribution of Al, Si, P and Ca ions in the surrounding soft tissue after implantation of a calcium phosphate-mullite ceramic composite in a rabbit animal model.   J Mater Sci Mater Med Aug  
Abstract: Synthetic calcium phosphates, despite their bioactivity, are brittle. Calcium phosphate- mullite composites have been suggested as potential dental and bone replacement materials which exhibit increased toughness. Aluminium, present in mullite, has however been linked to bone demineralisation and neurotoxicity: it is therefore important to characterise the materials fully in order to understand their in vivo behaviour. The present work reports the compositional mapping of the interfacial region of a calcium phosphate-20 wt% mullite biocomposite/soft tissue interface, obtained from the samples implanted into the long bones of healthy rabbits according to standard protocols (ISO-10993) for up to 12 weeks. X-ray micro-fluorescence was used to map simultaneously the distribution of Al, P, Si and Ca across the ceramic-soft tissue interface. A well defined and sharp interface region was present between the ceramic and the surrounding soft tissue for each time period examined. The concentration of Al in the surrounding tissue was found to fall by two orders of magnitude, to the background level, within ~35 μm of the implanted ceramic.
Notes:
2010
Shekhar Nath, Raghunandan Ummethala, Bikramjit Basu (2010)  Fretting wear behavior of calcium phosphate-mullite composites in dry and albumin-containing simulated body fluid conditions.   J Mater Sci Mater Med 21: 4. 1151-1161 Apr  
Abstract: In a recent work, it has been shown that it is possible to achieve a better combination of compressive strength, flexural strength and toughness properties in calcium phosphate (CaP) composites containing 20 and 30 wt% mullite (3Al(2)O(3).2SiO(2)). In view of their potential application as load bearing implants, the present work reports the friction and wear properties of the newly developed composites against zirconia under dry ambient as well as in simulated body fluid (SBF) containing bovine serum albumin (BSA) protein. For comparison, experiments were also conducted on monolithic hydroxyapatite (HAp, Ca(10)(PO(4))(6)(OH)(2)) and mullite under identical conditions. Under the investigated fretting conditions, the mullite-containing composites exhibited higher coefficient of friction (COF) of 0.4-0.6, compared to pure HAp (COF approximately 0.25-0.3). Although the wear resistance of the composites containing 20 or 30 wt% mullite was better in dry conditions, higher wear rate was measured in SBF conditions. The difference in tribological properties has been analyzed in reference to the difference in phase assemblage and mechanical properties. A comparison with some competing biomaterials reveals good potential of the investigated CaP-mullite composites for application as wear resistant implants.
Notes:
Ashok Priya, Shekhar Nath, Krishanu Biswas, Bikramjit Basu (2010)  In vitro dissolution of calcium phosphate-mullite composite in simulated body fluid.   J Mater Sci Mater Med 21: 6. 1817-1828 Jun  
Abstract: In our recent research, we have developed novel CaP-mullite composites for bone implant applications. In order to realize such applications, the in vitro dissolution behaviour of these materials needs to be evaluated. In this perspective, the present paper reports the dissolution behavior of pure hydroxyapatite (HAp) and hydroxyapatite composites with 20-30 wt% mullite in simulated body fluid (SBF). The in vitro dissolution experiments were carried out for different time duration starting from 7 days up to 28 days. XRD and SEM results show almost no dissolution for pure HAp and HAp composite with 30 wt% mullite. However, HAp-20 wt% mullite composite exhibits considerable dissolution after 7 days. The alpha-TCP phase mainly contributes to the dissolution process. Based on the dynamic changes in pH, ionic conductivity, Ca and P ion concentration in SBF as well as microstructural observations of the bioceramic surfaces after various time frames of immersion in SBF, the differences in dissolution behaviour are discussed.
Notes:
Shekhar Nath, Sushma Kalmodia, Bikramjit Basu (2010)  Densification, phase stability and in vitro biocompatibility property of hydroxyapatite-10 wt% silver composites.   J Mater Sci Mater Med 21: 4. 1273-1287 Apr  
Abstract: In this paper, we demonstrate how a simple fabrication route, i.e., pressureless sintering of mechanically mixed powders can be employed to develop hydroxyapatite (HAp, Ca(10)(PO(4))(6)(OH)(2))-silver (Ag) bioceramic composites with superior combination of physical (hardness, toughness), non-cytotoxicity, cytocompatiblity and anti-microbial property. The densification results show that such composites can be sintered at 1200 degrees C for 2 h near to theoretical density (>98% rho(th).) An important observation is that the dissociation of HAp phase can be prevented during sintering up to 1300 degrees C for 2 h in HAp-10 wt% Ag composites. The stability of HAp in presence of silver is discussed in reference to the results obtained using XRD, FTIR and Raman spectroscopy. The hardness values of the composites are comparable (approximately 6.5 GPa) to that of pure HAp, despite of the presence of softer Ag particles. The sintered composites exhibit modest crack growth resistance property and their toughness varies in the range of 0.9-1.2 MPa m(0.5), depending on sintering temperature. For selected samples, the in vitro characterization was performed using mouse fibroblast (L929) and human osteosarcoma (MG63) cell lines. The combination of biochemical assays (MTT, ALP and osteocalcin) confirm that HAp-10 wt% Ag biocomposites have comparable or even better cellular viability, osteogenic differentiation and bone mineralization as well as osteoinduction property. Antibacterial experiments involving gram-negative bacteria, Escherichia coli confirm excellent bactericidal property of HAp-10 wt% Ag composites, sintered using mechanically mixed powders.
Notes:
2009
Ravi Kumar, Sushma Kalmodia, Shekhar Nath, Dileep Singh, Bikramjit Basu (2009)  Phase assemblage study and cytocompatibility property of heat treated potassium magnesium phosphate-silicate ceramics.   J Mater Sci Mater Med 20: 8. 1689-1695 Aug  
Abstract: This article reports the study on a new generation bioactive ceramic, based on MgKPO(4) (Magnesium Potassium Phosphate, abbreviated as MKP) for biomedical applications. A series of heat treatment experiments on the slip cast silica (SiO(2)) containing MKP ceramics were carried out at 900, 1,000 and 1,100 degrees C for 4 h in air. The density of the slip cast ceramic increases to 2.5 gm/cm(3) upon heat treatment at 900 degrees C. However, no significant change in density is measured upon heat treatment to higher temperature of 1,000 and 1,100 degrees C. On the basis of XRD results, the presence of K(2)MgSi(5)O(12) and dehydrated MgKPO(4) were confirmed and complementary information has also been obtained using FT-IR and Raman spectroscopy. In order to confirm the in vitro cytocompatibility property, the cell culture tests were carried out on selected samples and the results reveal good cell adhesion and spreading of L929 mouse fibroblast cells. MTT assay analysis with L929 cells confirmed non-cytotoxic behavior of MKP containing ceramics and the results are comparable with sintered HAp ceramics. It is expected that the newly developed MKP based materials could be a good substitute for hydroxyapatite (HAp or HA) based bioceramics.
Notes:
Subhadip Bodhak, Shekhar Nath, Bikramjit Basu (2009)  Friction and wear properties of novel HDPE--HAp--Al2O3 biocomposites against alumina counterface.   J Biomater Appl 23: 5. 407-433 Mar  
Abstract: In an effort to enhance physical properties of biopolymers (high-density polyethylene, HDPE) in terms of elastic modulus and hardness, various ceramic fillers, like alumina (Al2O3) and hydroxyapatite (HAp) are added, and therefore it is essential to assess the friction and wear resistance properties of HDPE biocomposites. In this perspective, HDPE composites with varying ceramic filler content (upto 40 vol%) were fabricated under the optimal compression molding conditions and their friction and wear properties were evaluated against Al2O3 at fretting contacts. All the experiments were conducted at a load of 10 N for duration of 100,000 cycles in both dry as well as simulated body fluid (SBF). Such planned set of experiments has been designed to address three important issues: (a) whether the improvement in physical properties (hardness, E-modulus) will lead to corresponding improvement in friction and wear properties; (b) whether the fretting in SBF will provide sufficient lubrication in order to considerably enhance the tribological properties, as compared to that in ambient conditions; and (c) whether the generation of wear debris particles be reduced for various compositionally modified polymer composites, in comparison to unreinforced HDPE. The experimental results indicate the possibility of achieving extremely low coefficient of friction (COF approximately 0.047) as well as higher wear resistance (wear rate in the order of approximately 10(-7) mm3 N(-1) m(-1)) with the newly developed composites in SBF. A low wear depth of 3.5-4 microm is recorded, irrespective of fretting environment. Much effort has been put forward to correlate the friction and wear mechanisms with abrasion, adhesion, and wear debris formation.
Notes:
Shekhar Nath, Bikramjit Basu, Mira Mohanty, P V Mohanan (2009)  In vivo response of novel calcium phosphate-mullite composites: results up to 12 weeks of implantation.   J Biomed Mater Res B Appl Biomater 90: 2. 547-557 Aug  
Abstract: In this paper, the in vivo response, in particular, the histocompatibility of newly developed CaP-mullite composites is reported. In the present experiments, the bioceramic implants were inserted in the long bones of healthy rabbits according to standard protocols (ISO-10993) and the tissue response was studied at different time intervals of up to 12 weeks. Ultra high-molecular weight polyethylene (UHMWPE) was used as control samples. The postimplant bone-material interfaces were analyzed by staining of histological sections, following bone tissue histopathology protocols. The interface zones were critically observed by fluorescent optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Importantly, no inflammation, necrosis was observed during this tenure. New bone formation was observed at all the implantation time intervals (1-12 weeks). However, the bone integrity with the material was increased after 12 weeks of implantation. Although macrophages and fibrous tissue were present during the first week of implantation, they were not observed on histology sections after 12 weeks postimplantation. More importantly, foci of chondrocytes could be observed after 12 weeks of implantation. Remodeling of Haversian canal was observed at the interfacial area of natural bone and implant material. All the observations were assessed critically to analyze the in vivo biocompatibility of this novel composite material.
Notes:
Shekhar Nath, Subhadip Bodhak, Bikramjit Basu (2009)  HDPE-Al2O3-HAp composites for biomedical applications: processing and characterizations.   J Biomed Mater Res B Appl Biomater 88: 1. 1-11 Jan  
Abstract: The objective of this work is to demonstrate how the stiffness, hardness, as well as the biocompatibility property, of bioinert high-density polyethylene (HDPE) can be significantly improved by the combined addition of both bioinert and bioactive ceramic fillers. For this purpose, different volume fractions of hydroxyapatite and alumina, limited to a total of 40 vol %, have been incorporated in HDPE matrix. All the hybrid composites and monolithic HDPE were developed under optimized hot pressing condition (130 degrees C, 0.5 h, 92 MPa pressure). The results of the mechanical property characterization reveal that higher elastic modulus (6.2 GPa) and improved hardness (226.5 MPa) could be obtained in the developed HDPE-20 vol %-HAp-20 vol % Al(2)O(3) composite. Under the selected fretting conditions against various counterbody materials (steel, Al(2)O(3), and ZrO(2)), an extremely low COF of (0.07-0.11) and higher wear resistance (order of 10(-6) mm(3)/Nm) are obtained with the HDPE/20 vol % HAp/20 vol % Al(2)O(3) composite in both air and simulated body fluid environment. Importantly, in-vitro cell culture study using L929 fibroblast cells confirms favorable cell adhesion properties in the developed hybrid composite.
Notes:
2008
Subhadip Bodhak, Shekhar Nath, Bikramjit Basu (2008)  Fretting wear properties of hydroxyapatite, alumina containing high density polyethylene biocomposites against zirconia.   J Biomed Mater Res A 85: 1. 83-98 Apr  
Abstract: Considering the importance of wear on the materials performance in biomedical applications, the major objective of the present work is to investigate the friction and fretting wear behavior of various HDPE-based composites against zirconia counterbody, both in air and simulated body fluid (SBF) environment. Both Al(2)O(3) and/or HAp fillers (upto 40 vol %) have been incorporated in HDPE to improve the hardness and elastic modulus of HDPE. The fretting wear study indicates that extremely low COF (approximately 0.055-0.075) as well as higher wear resistance (wear rate in the order of approximately 10(-6) mm(3)/N m) can be achieved with the newly developed composites in SBF. A low wear depth of 3-7 microm is recorded, irrespective of fretting environment. Besides reporting the phenomenological tribological data, major focus has been on to understand the underlying mechanism of material removal at fretting contacts. Such understanding has been established in discussing the wear mechanisms in terms of deformation of polymer matrix, tribolayer formation, and wear debris generation.
Notes:
2007
Shekhar Nath, Subhadip Bodhak, Bikramjit Basu (2007)  Tribological investigation of novel HDPE-HAp-Al2O3 hybrid biocomposites against steel under dry and simulated body fluid condition.   J Biomed Mater Res A 83: 1. 191-208 Oct  
Abstract: Among various biocompatible polymers, polyethylene based materials have received wider attention because of its excellent stability in body fluid, inertness, and easy formability. Attempts have been made to improve their physical properties (modulus/strength) to enable them to be used as load bearing hard tissue replacement applications. Among such attempts, high density polyethylene (HDPE)-hydroxyapatite (HAp) composite (HAPEX), has already been developed for total hip replacement (THR) acetabular cup and low load bearing bone tissue replacement. In the present work, alumina has been added as a partial replacement of HAp phase to improve the mechanical and tribological properties of the HAPEX composite. In an attempt to assess the suitability of the developed composite in THR application, the tribological properties against steel counterbody under both in air and simulated body fluid (SBF), have been investigated and efforts have been made to understand the wear mechanisms. The fretting wear study indicates the possibility of achieving extremely low COF (Coefficient of Friction approximately 0.09) as well as higher wear resistance (order of 10(-6) mm(3)/N m) with the newly developed composites in SBF. A low wear depth of approximately 4.6-5.3 microm is recorded, irrespective of fretting environment. The implication of the work is that optimal and combined addition of bioactive and bioinert ceramic filler to HDPE can provide a good opportunity to obtain hybrid biocomposites with better combination of physical properties (modulus, hardness) as well as low friction and high wear resistance.
Notes:
2006
2002

Book chapters

2009
Powered by PublicationsList.org.