hosted by
publicationslist.org
    
stephanie pebernard

stephanie.pebernard@gmail.com

Journal articles

2008
 
DOI   
PMID 
Stephanie Pebernard, J Jefferson P Perry, John A Tainer, Michael N Boddy (2008)  Nse1 RING-like domain supports functions of the Smc5-Smc6 holocomplex in genome stability.   Mol Biol Cell 19: 10. 4099-4109 Oct  
Abstract: The Smc5-Smc6 holocomplex plays essential but largely enigmatic roles in chromosome segregation, and facilitates DNA repair. The Smc5-Smc6 complex contains six conserved non-SMC subunits. One of these, Nse1, contains a RING-like motif that often confers ubiquitin E3 ligase activity. We have functionally characterized the Nse1 RING-like motif, to determine its contribution to the chromosome segregation and DNA repair roles of Smc5-Smc6. Strikingly, whereas a full deletion of nse1 is lethal, the Nse1 RING-like motif is not essential for cellular viability. However, Nse1 RING mutant cells are hypersensitive to a broad spectrum of genotoxic stresses, indicating that the Nse1 RING motif promotes DNA repair functions of Smc5-Smc6. We tested the ability of both human and yeast Nse1 to mediate ubiquitin E3 ligase activity in vitro and found no detectable activity associated with full-length Nse1 or the isolated RING domains. Interestingly, however, the Nse1 RING-like domain is required for normal Nse1-Nse3-Nse4 trimer formation in vitro and for damage-induced recruitment of Nse4 and Smc5 to subnuclear foci in vivo. Thus, we propose that the Nse1 RING-like motif is a protein-protein interaction domain required for Smc5-Smc6 holocomplex integrity and recruitment to, or retention at, DNA lesions.
Notes:
 
DOI   
PMID 
Stephanie Pebernard, Lana Schaffer, Daniel Campbell, Steven R Head, Michael N Boddy (2008)  Localization of Smc5/6 to centromeres and telomeres requires heterochromatin and SUMO, respectively.   EMBO J 27: 22. 3011-3023 Nov  
Abstract: The Smc5/6 holocomplex executes key functions in genome maintenance that include ensuring the faithful segregation of chromosomes at mitosis and facilitating critical DNA repair pathways. Smc5/6 is essential for viability and therefore, dissecting its chromosome segregation and DNA repair roles has been challenging. We have identified distinct epigenetic and post-translational modifications that delineate roles for fission yeast Smc5/6 in centromere function, versus replication fork-associated DNA repair. We monitored Smc5/6 subnuclear and genomic localization in response to different replicative stresses, using fluorescence microscopy and chromatin immunoprecipitation (ChIP)-on-chip methods. Following hydroxyurea treatment, and during an unperturbed S phase, Smc5/6 is transiently enriched at the heterochromatic outer repeats of centromeres in an H3-K9 methylation-dependent manner. In contrast, methyl methanesulphonate treatment induces the accumulation of Smc5/6 at subtelomeres, in an Nse2 SUMO ligase-dependent, but H3-K9 methylation-independent manner. Finally, we determine that Smc5/6 loads at all genomic tDNAs, a phenomenon that requires intact consensus TFIIIC-binding sites in the tDNAs.
Notes:
2007
 
DOI   
PMID 
John Prudden, Stephanie Pebernard, Grazia Raffa, Daniela A Slavin, J Jefferson P Perry, John A Tainer, Clare H McGowan, Michael N Boddy (2007)  SUMO-targeted ubiquitin ligases in genome stability.   EMBO J 26: 18. 4089-4101 Sep  
Abstract: We identify the SUMO-Targeted Ubiquitin Ligase (STUbL) family of proteins and propose that STUbLs selectively ubiquitinate sumoylated proteins and proteins that contain SUMO-like domains (SLDs). STUbL recruitment to sumoylated/SLD proteins is mediated by tandem SUMO interaction motifs (SIMs) within the STUbLs N-terminus. STUbL-mediated ubiquitination maintains sumoylation pathway homeostasis by promoting target protein desumoylation and/or degradation. Thus, STUbLs establish a novel mode of communication between the sumoylation and ubiquitination pathways. STUbLs are evolutionarily conserved and include: Schizosaccharomyces pombe Slx8-Rfp (founding member), Homo sapiens RNF4, Dictyostelium discoideum MIP1 and Saccharomyces cerevisiae Slx5-Slx8. Cells lacking Slx8-Rfp accumulate sumoylated proteins, display genomic instability, and are hypersensitive to genotoxic stress. These phenotypes are suppressed by deletion of the major SUMO ligase Pli1, demonstrating the specificity of STUbLs as regulators of sumoylated proteins. Notably, human RNF4 expression restores SUMO pathway homeostasis in fission yeast lacking Slx8-Rfp, underscoring the evolutionary functional conservation of STUbLs. The DNA repair factor Rad60 and its human homolog NIP45, which contain SLDs, are candidate STUbL targets. Consistently, Rad60 and Slx8-Rfp mutants have similar DNA repair defects.
Notes:
2006
 
DOI   
PMID 
Stephanie Pebernard, James Wohlschlegel, W Hayes McDonald, John R Yates, Michael N Boddy (2006)  The Nse5-Nse6 dimer mediates DNA repair roles of the Smc5-Smc6 complex.   Mol Cell Biol 26: 5. 1617-1630 Mar  
Abstract: Stabilization and processing of stalled replication forks is critical for cell survival and genomic integrity. We characterize a novel DNA repair heterodimer of Nse5 and Nse6, which are nonessential nuclear proteins critical for chromosome segregation in fission yeast. The Nse5/6 dimer facilitates DNA repair as part of the Smc5-Smc6 holocomplex (Smc5/6), the basic architecture of which we define. Nse5-Nse6 [corrected] (Nse5 and Nse6) [corrected] mutants display a high level of spontaneous DNA damage and mitotic catastrophe in the absence of the master checkpoint regulator Rad3 (hATR). Nse5/6 mutants are required for the response to genotoxic agents that block the progression of replication forks, acting in a pathway that allows the tolerance of irreparable UV lesions. Interestingly, the UV sensitivity of Nse5/6 [corrected] is suppressed by concomitant deletion of the homologous recombination repair factor, Rhp51 (Rad51). Further, the viability of Nse5/6 mutants depends on Mus81 and Rqh1, factors that resolve or prevent the formation of Holliday junctions. Consistently, the UV sensitivity of cells lacking Nse5/6 can be partially suppressed by overexpressing the bacterial resolvase RusA. We propose a role for Nse5/6 mutants in suppressing recombination that results in Holliday junction formation or in Holliday junction resolution.
Notes:
2004
 
DOI   
PMID 
Matthias D Kaeser, Stephanie Pebernard, Richard D Iggo (2004)  Regulation of p53 stability and function in HCT116 colon cancer cells.   J Biol Chem 279: 9. 7598-7605 Feb  
Abstract: We have used a lentiviral vector to stably express p53 at a physiological level in p53 knockout HCT116 cells. Cells transduced with wild type p53 responded to genotoxic stress by stabilizing p53 and expressing p53 target genes. The reconstituted cells underwent G(1) arrest or apoptosis appropriately depending on the type of stress, albeit less efficiently than parental wild type cells. Compared with cells expressing exogenous wild type p53, the apoptotic response to 5-fluorouracil (5FU) was >50% reduced in cells expressing S15A or S20A mutant p53, and even more reduced by combined mutation of serines 6, 9, 15, 20, 33, and 37 (N6A). Among a panel of p53 target genes tested by quantitative PCR, the gene showing the largest defect in induction by 5FU was BBC3 (PUMA), which was induced 4-fold by wild type p53 and 2-fold by the N6A mutant. Mutation of N-terminal phosphorylation sites did not prevent p53 stabilization by doxorubicin or 5FU. MDM2 silencing by RNA interference activated p53 target gene expression in normal fibroblasts but not in HCT116 cells, and exogenous p53 could be stabilized in HCT116 knockout cells despite combined mutation of p53 phosphorylation sites and silencing of MDM2 expression. The MDM2 feedback loop is thus defective, and other mechanisms must exist to regulate p53 stability and function in this widely used tumor cell line.
Notes:
 
DOI   
PMID 
Stephanie Pebernard, W Hayes McDonald, Yelena Pavlova, John R Yates, Michael N Boddy (2004)  Nse1, Nse2, and a novel subunit of the Smc5-Smc6 complex, Nse3, play a crucial role in meiosis.   Mol Biol Cell 15: 11. 4866-4876 Nov  
Abstract: The structural maintenance of chromosomes (SMC) family of proteins play key roles in the organization, packaging, and repair of chromosomes. Cohesin (Smc1+3) holds replicated sister chromatids together until mitosis, condensin (Smc2+4) acts in chromosome condensation, and Smc5+6 performs currently enigmatic roles in DNA repair and chromatin structure. The SMC heterodimers must associate with non-SMC subunits to perform their functions. Using both biochemical and genetic methods, we have isolated a novel subunit of the Smc5+6 complex, Nse3. Nse3 is an essential nuclear protein that is required for normal mitotic chromosome segregation and cellular resistance to a number of genotoxic agents. Epistasis with Rhp51 (Rad51) suggests that like Smc5+6, Nse3 functions in the homologous recombination based repair of DNA damage. We previously identified two non-SMC subunits of Smc5+6 called Nse1 and Nse2. Analysis of nse1-1, nse2-1, and nse3-1 mutants demonstrates that they are crucial for meiosis. The Nse1 mutant displays meiotic DNA segregation and homologous recombination defects. Spore viability is reduced by nse2-1 and nse3-1, without affecting interhomolog recombination. Finally, genetic interactions shared by the nse mutants suggest that the Smc5+6 complex is important for replication fork stability.
Notes:
 
DOI   
PMID 
Stephanie Pebernard, Richard D Iggo (2004)  Determinants of interferon-stimulated gene induction by RNAi vectors.   Differentiation 72: 2-3. 103-111 Mar  
Abstract: RNA interference is widely used to silence gene expression in mammalian cells. We recently reported that an shRNA expressed from the H1 promoter in a lentiviral vector could induce the expression of a large group of interferon-stimulated genes (ISGs). This response was unrelated to silencing of the gene targeted by the shRNA MORF4L1. In parallel, we constructed lentiviral vectors expressing shRNA from the U6 promoter and found that these too could induce expression of OAS1, a classic interferon target gene. The U6 vectors give a higher frequency of ISG induction than comparable lentiviral H1 vectors, suggesting that there might be a fundamental flaw in the vector design. We have characterized the U6 vectors in detail and report here that ISG induction is a consequence of the presence of an AA di-nucleotide near the transcription start site. A single nucleotide deletion in the siRNA sequence abolished OAS1 induction, suggesting that the mechanism underlying the response uses a sensor that can detect 19 bp RNA duplexes but not 14 bp duplexes. Adenoviral VA RNA I, which inhibits dsRNA-dependent protein kinase (PKR), was tested as a fusion partner to express shRNA on the grounds that it might prevent nonspecific off-target effects. Fusion of VA RNA I to a lamin shRNA was moderately effective in silencing lamin expression, but gave strong OAS1 induction by an shRNA that does not induce OAS1 when expressed from the U6 or H1 promoters. To avoid interferon induction by U6 vectors, we recommend preserving the wild-type sequence around the transcription start site, in particular a C/G sequence at positions -1/+1, and we describe a simple cloning strategy using the Gateway recombination system that facilitates this task.
Notes:
2003
 
DOI   
PMID 
Alan J Bridge, Stephanie Pebernard, Annick Ducraux, Anne-Laure Nicoulaz, Richard Iggo (2003)  Induction of an interferon response by RNAi vectors in mammalian cells.   Nat Genet 34: 3. 263-264 Jul  
Abstract: DNA vectors that express short hairpin RNAs (shRNAs) from RNA polymerase III (Pol III) promoters are a promising new tool to reduce gene expression in mammalian cells. shRNAs are processed to small interfering RNAs (siRNAs) of 21 nucleotides (nt) that guide the cleavage of the cognate mRNA by the RNA-induced silencing complex. Although siRNAs are thought to be too short to induce interferon expression, we report here that a substantial number of shRNA vectors can trigger an interferon response.
Notes:
 
PMID 
Christophe Butticaz, Angela Ciuffi, Miguel Muñoz, Jérôme Thomas, Alan Bridge, Stephanie Pebernard, Richard Iggo, Pascal Meylan, Amalio Telenti (2003)  Protection from HIV-1 infection of primary CD4 T cells by CCR5 silencing is effective for the full spectrum of CCR5 expression.   Antivir Ther 8: 5. 373-377 Oct  
Abstract: Stable gene silencing by RNA interference (RNAi) can be achieved by expression of small hairpin RNAs (shRNAs) from RNA polymerase III promoters. We have tested lentiviral vectors expressing shRNAs targetting CCR5 in primary CD4 T cells from donors representing various CCR5 and CCR2 genetic backgrounds covering the full spectrum of CCR5 expression levels and permissiveness for HIV-1 infection. A linear decrease in CCR5 expression resulted in a logarithmic decrease in cellular infection, giving up to three logs protection from HIV-1 infection in vitro. Protection was maintained at very high multiplicity of infection. This and other recent reports on RNAi should open a debate about the use of RNAi gene therapy for HIV infection.
Notes:
2001
 
PMID 
M Bardy, B Gay, S Pébernard, N Chazal, M Courcoul, R Vigne, E Decroly, P Boulanger (2001)  Interaction of human immunodeficiency virus type 1 Vif with Gag and Gag-Pol precursors: co-encapsidation and interference with viral protease-mediated Gag processing.   J Gen Virol 82: Pt 11. 2719-2733 Nov  
Abstract: Interactions of human immunodeficiency virus type 1 (HIV-1) Vif protein with various forms of Gag and Gag-Pol precursors expressed in insect cells were investigated in vivo and in vitro by co-encapsidation, co-precipitation and viral protease (PR)-mediated Gag processing assays. Addressing of Gag to the plasma membrane, its budding as extracellular virus-like particles (VLP) and the presence of the p6 domain were apparently not required for Vif encapsidation, as non-N-myristoylated Deltap6-Gag and Vif proteins were co-encapsidated into intracellular VLP. Encapsidation of Vif occurred at significantly higher copy numbers in extracellular VLP formed from N-myristoylated, budding-competent Gag-Pol precursors harbouring an inactive PR domain or in chimaeric VLP composed of Gag and Gag-Pol precursors compared with the Vif content of Pr55Gag VLP. Vif encapsidation efficiency did not seem to correlate directly with VLP morphology, since these chimaeric VLP were comparable in size and shape to Pr55Gag VLP. Vif apparently inhibited PR-mediated Pr55Gag processing in vitro, with preferential protection of cleavage sites at the MA-CA and CA-NC junctions. Vif was resistant to PR action in vitro under conditions that allowed full Gag processing, and no direct interaction between Vif and PR was detected in vivo or in vitro. This suggested that inhibition by Vif of PR-mediated Gag processing resulted from interaction of Vif with the Gag substrate and not with the enzyme. Likewise, the higher efficiency of Vif encapsidation by Gag-Pol precursor compared with Pr55Gag was probably not mediated by direct binding of Vif to the Gag-Pol-embedded PR domain, but more likely resulted from a particular conformation of the Gag structural domains of the Gag-Pol precursor.
Notes:
Powered by publicationslist.org.