hosted by
publicationslist.org
    

Stephen Goodwin


stephen.goodwin@dpag.ox.ac.uk

Journal articles

2010
Elizabeth J Rideout, Anthony J Dornan, Megan C Neville, Suzanne Eadie, Stephen F Goodwin (2010)  Control of sexual differentiation and behavior by the doublesex gene in Drosophila melanogaster.   Nat Neurosci 13: 4. 458-466 Apr  
Abstract: Doublesex proteins, which are part of the structurally and functionally conserved Dmrt gene family, are important for sex determination throughout the animal kingdom. We inserted Gal4 into the doublesex (dsx) locus of Drosophila melanogaster, allowing us to visualize and manipulate cells expressing dsx in various tissues. In the nervous system, we detected differences between the sexes in dsx-positive neuronal numbers, axonal projections and synaptic density. We found that dsx was required for the development of male-specific neurons that coexpressed fruitless (fru), a regulator of male sexual behavior. We propose that dsx and fru act together to form the neuronal framework necessary for male sexual behavior. We found that disrupting dsx neuronal function had profound effects on male sexual behavior. Furthermore, our results suggest that dsx-positive neurons are involved in pre- to post-copulatory female reproductive behaviors.
Notes:
2008
Anthony J Dornan, Stephen F Goodwin (2008)  Fly courtship song: triggering the light fantastic.   Cell 133: 2. 210-212 Apr  
Abstract: In a study in this issue, Clyne and Miesenböck (2008) apply an ingenious optogenetic technology to activate neurons that generate male-specific courtship song in flies. This work sheds new light on the neural circuitry underlying sexually dimorphic behaviors in Drosophila.
Notes:
Elizabeth J Rideout, Stephen F Goodwin (2008)  Sexual dimorphism: can you smell the difference?   Curr Biol 18: 10. R425-R427 May  
Abstract: A powerful new technique for visualizing neurons in the fly brain has uncovered fine neuroanatomical differences between the olfactory circuitries of male and female Drosophila.
Notes:
2007
Selim Terhzaz, Philippe Rosay, Stephen F Goodwin, Jan A Veenstra (2007)  The neuropeptide SIFamide modulates sexual behavior in Drosophila.   Biochem Biophys Res Commun 352: 2. 305-310 Jan  
Abstract: The expression of Drosophila neuropeptide AYRKPPFNGSIFamide (SIFamide) was shown by both immunohistology and in situ hybridization to be restricted to only four neurons of the pars intercerebralis. The role of SIFamide in adult courtship behavior in both sexes was studied using two different approaches to perturb the function of SIFamide; targeted cell ablation and RNA interference (RNAi). Elimination of SIFamide by either of these methods results in promiscuous flies; males perform vigorous and indiscriminant courtship directed at either sex, while females appear sexually hyper-receptive. These results demonstrate that SIFamide is responsible for these behavioral effects and that the four SIFamidergic neurons and arborizations play an important function in the neuronal circuitry controlling Drosophila sexual behavior.
Notes:
Elizabeth J Rideout, Jean-Christophe Billeter, Stephen F Goodwin (2007)  The sex-determination genes fruitless and doublesex specify a neural substrate required for courtship song.   Curr Biol 17: 17. 1473-1478 Sep  
Abstract: Courtship song is a critical component of male courtship behavior in Drosophila, making the female more receptive to copulation and communicating species-specific information [1-6]. Sex mosaic studies have shown that the sex of certain regions of the central nervous system (CNS) is critical to song production [7]. Our examination of one of these regions, the mesothoracic ganglion (Msg), revealed the coexpression of two sex-determination genes, fruitless (fru) and doublesex (dsx). Because both genes are involved in creating a sexually dimorphic CNS [8, 9] and are necessary for song production [10-13], we investigated the individual contributions of fru and dsx to the specification of a male CNS and song production. We show a novel requirement for dsx in specifying a sexually dimorphic population of fru-expressing neurons in the Msg. Moreover, by using females constitutively expressing the male-specific isoforms of fru (Fru(M)), we show a critical requirement for the male isoform of dsx (Dsx(M)), alongside Fru(M), in the specification of courtship song. Therefore, although Fru(M) expression is sufficient for the performance of many male-specific behaviors [14], we have shown that without Dsx(M), the determination of a male-specific CNS and thus a full complement of male behaviors are not realized.
Notes:
W S Neckameyer, C M Coleman, S Eadie, S F Goodwin (2007)  Compartmentalization of neuronal and peripheral serotonin synthesis in Drosophila melanogaster.   Genes Brain Behav 6: 8. 756-769 Nov  
Abstract: In Drosophila, one enzyme (Drosophila tryptophan-phenylalanine hydroxylase, DTPHu) hydroxylates both tryptophan to yield 5-hydroxytryptophan, the first step in serotonin synthesis, and phenylalanine, to generate tyrosine. Analysis of the sequenced Drosophila genome identified an additional enzyme with extensive homology to mammalian tryptophan hydroxylase (TPH), which we have termed DTRHn. We have shown that DTRHn can hydroxylate tryptophan in vitro but displays differential activity relative to DTPHu when using tryptophan as a substrate. Recent studies in mice identified the presence of two TPH genes, Tph1 and Tph2, from distinct genetic loci. Tph1 represents the non-neuronal TPH gene, and Tph2 is expressed exclusively in the brain. In this article, we show that DTRHn is neuronal in expression and function and thus represents the Drosophila homologue of Tph2. Using a DTRHn-null mutation, we show that diminished neuronal serotonin affects locomotor, olfactory and feeding behaviors, as well as heart rate. We also show that DTPHu functions in vivo as a phenylalanine hydroxylase in addition to its role as the peripheral TPH in Drosophila, and is critical for non-neuronal developmental events.
Notes:
2006
Donald A Gailey, Jean-Christophe Billeter, Jim H Liu, Frederick Bauzon, Jane B Allendorfer, Stephen F Goodwin (2006)  Functional conservation of the fruitless male sex-determination gene across 250 Myr of insect evolution.   Mol Biol Evol 23: 3. 633-643 Mar  
Abstract: Male sexual behavior in the fruit fly Drosophila melanogaster is regulated by fruitless (fru), a sex-determination gene specifying the synthesis of BTB-Zn finger proteins that likely function as male-specific transcriptional regulators. Expression of fru in the nervous system specifies male sexual behavior and the muscle of Lawrence (MOL), an abdominal muscle that develops in males but not in females. We have isolated the fru ortholog from the malaria mosquito Anopheles gambiae and show the gene's conserved genomic structure. We demonstrate that male-specific mosquito fru protein isoforms arise by conserved mechanisms of sex-specifically activated and alternative exon splicing. A male-determining function of mosquito fru is revealed by ectopic expression of the male mosquito isoform FRUMC in fruit flies; this results in MOL development in both fru-mutant males and fru+ females who otherwise develop no MOL. In parallel, we provide evidence of a unique feature of muscle differentiation within the fifth abdominal segment of male mosquitoes that strongly resembles the fruit fly MOL. Given these conserved features within the context of 250 Myr of evolutionary divergence between Drosophila and Anopheles, we hypothesize that fru is the prototypic gene of male sexual behavior among dipteran insects.
Notes:
Jean-Christophe Billeter, Elizabeth J Rideout, Anthony J Dornan, Stephen F Goodwin (2006)  Control of male sexual behavior in Drosophila by the sex determination pathway.   Curr Biol 16: 17. R766-R776 Sep  
Abstract: Understanding how genes influence behavior, including sexuality, is one of biology's greatest challenges. Much of the recent progress in understanding how single genes can influence behavior has come from the study of innate behaviors in the fruit fly Drosophila melanogaster. In particular, the elaborate courtship ritual performed by the male fly has provided remarkable insights into how the neural circuitry underlying sexual behavior--which is largely innate in flies--is built into the nervous system during development, and how this circuitry functions in the adult. In this review we will discuss how genes of the sex determination pathway in Drosophila orchestrate the developmental events necessary for sex-specific behaviors and physiology, and the broader lessons this can teach us about the mechanisms underlying the development of sex-specific neural circuitry.
Notes:
Jean-Christophe Billeter, Adriana Villella, Jane B Allendorfer, Anthony J Dornan, Michael Richardson, Donald A Gailey, Stephen F Goodwin (2006)  Isoform-specific control of male neuronal differentiation and behavior in Drosophila by the fruitless gene.   Curr Biol 16: 11. 1063-1076 Jun  
Abstract: BACKGROUND: How the central nervous system (CNS) develops to implement innate behaviors remains largely unknown. Drosophila male sexual behavior has long been used as a model to address this question. The male-specific products of fruitless (fru) are pivotal to the emergence of this behavior. These putative transcription factors, containing one of three alternative DNA binding domains, determine the neuronal substrates for sexual behavior in male CNS. RESULTS: We isolated the first fru coding mutation, resulting in complete loss of one isoform. At the neuronal level, this isoform alone controls differentiation of a male-specific muscle and its associated motorneuron. Conversely, a combination of isoforms is required for development of serotonergic neurons implicated in male copulatory behavior. Full development of these neurons requires the male-specific product of doublesex, a gene previously thought to act independently of fru. At the behavioral level, missing one isoform leads to diminished courtship behavior and infertility. We achieved the first rescue of a distinct fru behavioral phenotype, expressing a wild-type isoform in a defined subset of its normal expression pattern. CONCLUSION: This study exemplifies how complex behaviors can be controlled by a single locus through multiple isoforms regulating both developmental and physiological pathways in different neuronal substrates.
Notes:
2005
Punita Sharma, Zoltan Asztalos, Champakali Ayyub, Marien de Bruyne, Anthony J Dornan, Araceli Gomez-Hernandez, John Keane, James Killeen, Susanne Kramer, Mayur Madhavan, Helen Roe, Pradeep Dagadu Sherkhane, Khalid Siddiqi, Elizabeth Silva, John R Carlson, Stephen F Goodwin, Martin Heisenberg, Kits Krishnan, Charalambos P Kyriacou, Linda Partridge, Juan Riesgo-Escovar, Veronica Rodrigues, Tim Tully, Cahir J O'Kane (2005)  Isogenic autosomes to be applied in optimal screening for novel mutants with viable phenotypes in Drosophila melanogaster.   J Neurogenet 19: 2. 57-85 Apr/Jun  
Abstract: Most insertional mutagenesis screens of Drosophila performed to date have not used target chromosomes that have been checked for their suitability for phenotypic screens for viable phenotypes. To address this, we have generated a selection of stocks carrying either isogenized second chromosomes or isogenized third chromosomes, in a genetic background derived from a Canton-S wild-type strain. We have tested these stocks for a range of behavioral and other viable phenotypes. As expected, most lines are statistically indistinguishable from Canton-S in most phenotypes tested. The lines generated are now being used as target chromosomes in mutagenesis screens, and the characterization reported here will facilitate their use in screens of these lines for behavioral and other viable phenotypes.
Notes:
Anthony J Dornan, Donald A Gailey, Stephen F Goodwin (2005)  GAL4 enhancer trap targeting of the Drosophila sex determination gene fruitless.   Genesis 42: 4. 236-246 Aug  
Abstract: The fru4 allele of the sex determination gene fruitless is induced by insertion of a P[lacZ,ry+] enhancer trap element. This insert also acts to disrupt expression of the fru P1 promoter derived male-specific proteins, consequently impairing male courtship behavior. fru4 maps less than 2 kb upstream of the fru P3 promoter, whose function is essential for viability. We replaced this insert with a GAL4 element, P[GAL4,w+], recovering two lines with insertions in opposite orientations at the locus, one of which demonstrated fru-specific mutant phenotypes. Reporter expression of these lines recapitulated that of P3- and P4-derived proteins which, when correlated with a developmental and tissue specific survey of fru promoters' activities, uncovered a previously unsuspected complexity of fru regulation. These novel fru alleles provide the tools for manipulation of fru-expressing cells, allowing the consequent effects to be related back to specific fru functions and the regulatory units controlling these activities.
Notes:
A Carhan, F Allen, J D Armstrong, M Hortsch, S F Goodwin, K M C O'Dell (2005)  Female receptivity phenotype of icebox mutants caused by a mutation in the L1-type cell adhesion molecule neuroglian.   Genes Brain Behav 4: 8. 449-465 Nov  
Abstract: Relatively little is known about the genes and brain structures that enable virgin female Drosophila to make the decision to mate or not. Classical genetic approaches have identified several mutant females that have a reluctance-to-mate phenotype, but most of these have additional behavioral defects. However, the icebox (ibx) mutation was previously reported to lower the sexual receptivity of females, without apparently affecting any other aspect of female behavior. We have shown that the ibx mutation maps to the 7F region of the Drosophila X chromosome to form a complex complementation group with both lethal and viable alleles of neuroglian (nrg). The L1-type cell adhesion molecule encoded by nrg consists of six immunoglobulin-like domains, five fibronectin-like domains, one transmembrane domain and one alternatively spliced intracellular domain. The ibx strain has a missense mutation causing a glycine-to-arginine change at amino acid 92 in the first immunoglobulin domain of nrg. Defects in the central brain of ibx mutants are similar to those observed in another nrg mutant, central brain deranged(1) (ceb(1)). However, both ceb(1) homozygous and ceb(1)/ibx heterozygous females are receptive. The expression of a transgene containing the non-neural isoform of nrg rescues both the receptivity and the brain structure phenotypes of ibx females.
Notes:
2004
Jean-Christophe Billeter, Stephen F Goodwin (2004)  Characterization of Drosophila fruitless-gal4 transgenes reveals expression in male-specific fruitless neurons and innervation of male reproductive structures.   J Comp Neurol 475: 2. 270-287 Jul  
Abstract: The fruitless (fru) gene acts in the central nervous system (CNS) of Drosophila melanogaster to establish male sexual behavior. Genetic dissection of the locus has shown that one of the fru gene's promoter, P1, controls the spatial and temporal expression of male-specific FruM proteins critical to determining stereotypical male sexual behavior. By using the Gal4-expression system, we show that a 16-kb fragment of the fru P1 promoter's 5' regulatory region drives the expression of Gal4 in a subset of FruM-expressing neurons within both the pupal and adult CNS. Colocalization of FruM and a Gal4-responsive reporter shows that the fru(P1)-gal4 fusion construct generates expression in both previously characterized FruM-expressing neurons as well as within cells of both the CNS and the peripheral nervous system that have not been demonstrated as FruM-expressing. Gal4-expressing neurons are shown to innervate abdominal organs directly relevant to fru function; specifically, the muscle of Lawrence (MOL) and the male internal reproductive organs. Innervations of the latter are shown to originate from identified FruM-serotonergic neurons. Furthermore, we show that the MOL neuromuscular junction is sexually dimorphic. Finally, we describe Gal4 expression in neurites innervating male reproductive structures that are hypothesized to be targets of fru function. Isolation of the regulatory sequences controlling the expression of fru in the CNS, therefore, provides a potent tool for the manipulation of FruM-expressing neurons and for understanding the cellular basis of Drosophila reproductive behavior.
Notes:
2002
Ho-Juhn Song, Jean-Christophe Billeter, Enrique Reynaud, Troy Carlo, Eric P Spana, Norbert Perrimon, Stephen F Goodwin, Bruce S Baker, Barbara J Taylor (2002)  The fruitless gene is required for the proper formation of axonal tracts in the embryonic central nervous system of Drosophila.   Genetics 162: 4. 1703-1724 Dec  
Abstract: The fruitless (fru) gene in Drosophila melanogaster is a multifunctional gene that has sex-specific functions in the regulation of male sexual behavior and sex-nonspecific functions affecting adult viability and external morphology. While much attention has focused on fru's sex-specific roles, less is known about its sex-nonspecific functions. We have examined fru's sex-nonspecific role in embryonic neural development. fru transcripts from sex-nonspecific promoters are expressed beginning at the earliest stages of neurogenesis, and Fru proteins are present in both neurons and glia. In embryos that lack most or all fru function, FasII- and BP102-positive axons have defasciculation defects and grow along abnormal pathways in the CNS. These defects in axonal projections in fru mutants were rescued by the expression of specific UAS-fru transgenes under the control of a pan-neuronal scabrous-GAL4 driver. Our results suggest that one of fru's sex-nonspecific roles is to regulate the pathfinding ability of axons in the embryonic CNS.
Notes:
2001
A Anand, A Villella, L C Ryner, T Carlo, S F Goodwin, H J Song, D A Gailey, A Morales, J C Hall, B S Baker, B J Taylor (2001)  Molecular genetic dissection of the sex-specific and vital functions of the Drosophila melanogaster sex determination gene fruitless.   Genetics 158: 4. 1569-1595 Aug  
Abstract: A multibranched hierarchy of regulatory genes controls all aspects of somatic sexual development in Drosophila melanogaster. One branch of this hierarchy is headed by the fruitless (fru) gene and functions in the central nervous system, where it is necessary for male courtship behavior as well as the differentiation of a male-specific abdominal structure, the muscle of Lawrence (MOL). A preliminary investigation of several of the mutations described here showed that the fru gene also has a sex-nonspecific vital function. The fru gene produces a complex set of transcripts through the use of four promoters and alternative splicing. Only the primary transcripts produced from the most distal (P1) promoter are sex-specifically spliced under direction of the sex-determination hierarchy. We have analyzed eight new fru mutations, created by X-ray mutagenesis and P-element excision, to try to gain insight into the relationship of specific transcript classes to specific fru functions. Males that lack the P1-derived fru transcripts show a complete absence of sexual behavior, but no other defects besides the loss of the MOL. Both males and females that have reduced levels of transcripts from the P3 promoter develop into adults but frequently die after failing to eclose. Analysis of the morphology and behavior of adult escapers showed that P3-encoded functions are required for the proper differentiation and eversion of imaginal discs. Furthermore, the reduction in the size of the neuromuscular junctions on abdominal muscles in these animals suggests that one of fru's sex-nonspecific functions involves general aspects of neuronal differentiation. In mutants that lack all fru transcripts as well as a small number of adjacent genes, animals die at an early pupal stage, indicating that fru's function is required only during late development. Thus, fru functions both in the sex-determination regulatory hierarchy to control male sexual behavior through sex-specific transcripts and sex-nonspecifically to control the development of imaginal discs and motorneuronal synapses during adult development through sex-nonspecific transcript classes.
Notes:
2000
S F Goodwin, B J Taylor, A Villella, M Foss, L C Ryner, B S Baker, J C Hall (2000)  Aberrant splicing and altered spatial expression patterns in fruitless mutants of Drosophila melanogaster.   Genetics 154: 2. 725-745 Feb  
Abstract: The fruitless (fru) gene functions in Drosophila males to establish the potential for male sexual behaviors. fru encodes a complex set of sex-specific and sex-nonspecific mRNAs through the use of multiple promoters and alternative pre-mRNA processing. The male-specific transcripts produced from the distal (P1) fru promoter are believed to be responsible for its role in specifying sexual behavior and are only expressed in a small fraction of central nervous system (CNS) cells. To understand the molecular etiology of fruitless mutant phenotypes, we compared wild-type and mutant transcription patterns. These experiments revealed that the fru(2), fru(3), fru(4), and fru(sat) mutations, which are due to P-element inserts, alter the pattern of sex-specific and sex-nonspecific fru RNAs. These changes arise in part from the P-element insertions containing splice acceptor sites that create alternative processing pathways. In situ hybridization revealed no alterations in the locations of cells expressing the P1-fru-promoter-derived transcripts in fru(2), fru(3), fru(4), and fru(sat) pharate adults. For the fru(1) mutant (which is due to an inversion breakpoint near the P1 promoter), Northern analyses revealed no significant changes in fru transcript patterns. However, in situ hybridization revealed anomalies in the level and distribution of P1-derived transcripts: in fru(1) males, fewer P1-expressing neurons are found in regions of the dorsal lateral protocerebrum and abdominal ganglion compared to wild-type males. In other regions of the CNS, expression of these transcripts appears normal in fru(1) males. The loss of fruitless expression in these regions likely accounts for the striking courtship abnormalities exhibited by fru(1) males. Thus, we suggest that the mutant phenotypes in fru(2), fru(3), fru(4), and fru(sat) animals are due to a failure to appropriately splice P1 transcripts, whereas the mutant phenotype of fru(1) animals is due to the reduction or absence of P1 transcripts within specific regions of the CNS.
Notes:
G Lee, M Foss, S F Goodwin, T Carlo, B J Taylor, J C Hall (2000)  Spatial, temporal, and sexually dimorphic expression patterns of the fruitless gene in the Drosophila central nervous system.   J Neurobiol 43: 4. 404-426 Jun  
Abstract: The fruitless (fru) gene of Drosophila produces both sex-specifically and non-sex-specifically spliced transcripts. Male-specific fru products are believed to regulate male courtship. To further an understanding of this gene's behavioral role, we examined the central nervous system (CNS) for temporal, spatial, and sexually dimorphic expression patterns of sex-specific fru products by in situ hybridization and immunohistochemistry. For the latter, antibodies were designed to detect only male-specific forms of the protein (FRU(M)) or amino acid sequences that are in common among all translated products (FRU(COM)). Sex-specific mRNAs and male-specific proteins were first observed in mature larvae and peaked in their apparent abundances during the first half of the pupal period. At later stages and in adults, faint mRNA signals were seen in only a few neural clusters; in contrast, relatively strong FRU(M) signals persisted into adulthood. Twenty neuronal groups composed of 1700 fru-expressing neurons were identified in the midpupal CNS. These groups overlap most of the neural sites known to be involved in male courtship. Anti-FRU(COM) led to widespread labeling of neural and nonneural tissues in both sexes, but in the female CNS, only in developing ganglia in a pattern different from that of the male's FRU(M) cells. Expression of sex-specific fru mRNAs in the CNS of males analyzed from the earliest pupal stages indicated that sex-specific alternative splicing is not the exclusive mechanism regulating expression of fruitless transcripts.
Notes:
1999
S F Goodwin (1999)  Molecular neurogenetics of sexual differentiation and behaviour.   Curr Opin Neurobiol 9: 6. 759-765 Dec  
Abstract: Sex and death. Two things that come once in a lifetime. Only after death you're not nauseous. - Woody Allen 'Sleeper'. The brain and nervous system functions that underlie sex-specific behaviour are of obvious importance to all animals, including humans. To understand behaviour related to sex, it is important to distinguish those aspects that are controlled genetically. Much of the recent progress in studies of the molecular neurogenetics of sexual differentiation and behaviour has come from the use of genetically tractable organisms (i.e. fruitflies and nematode worms) that exhibit a full range of sexually dimorphic phenotypes.
Notes:
K M O'Dell, D Jamieson, S F Goodwin, K Kaiser (1999)  Abnormal courtship conditioning in males mutant for the RI regulatory subunit of Drosophila protein kinase A.   J Neurogenet 13: 1-2. 105-118 Jun  
Abstract: The previously described site-selected P-element mutagenesis of a Drosophila gene encoding the regulatory subunit of cAMP-dependent protein kinase generates mutants that have defective behavior in the olfactory learning test. Here we describe the effect of the same mutations in a courtship conditioning assay. Wild-type males can distinguish between virgin females (which they court vigorously), and fertilized females (which they court less vigorously). After exposure to fertilized females, wild-type males modify their behavior by decreasing courtship to subsequent target virgins, an effect that may last for many hours. Like wild-type males, PKA-RI mutant males are also able to distinguish between virgin and fertilized females. PKA-RI males also modify their behavior towards virgin females after prior exposure to a fertilized female, but such an effect is short-lived, suggesting a defect in memory rather than learning. We also show that under these conditions the behavior of PKA-RI males is similar to that of amnesiac, dunce and rutabaga males.
Notes:
1997
S F Goodwin, M Del Vecchio, K Velinzon, C Hogel, S R Russell, T Tully, K Kaiser (1997)  Defective learning in mutants of the Drosophila gene for a regulatory subunit of cAMP-dependent protein kinase.   J Neurosci 17: 22. 8817-8827 Nov  
Abstract: Disruptions of a Drosophila gene encoding a regulatory subunit of cAMP-dependent protein kinase homologous to mammalian RIbeta (dPKA-RI) were targeted to the first (noncoding) exon of dPKA-RI via site-selected P element mutagenesis. Flies homozygous for either of two mutant alleles showed specific defects in olfactory learning but not in subsequent memory decay. In contrast, olfactory acuity and shock reactivity, component behaviors required for normal odor avoidance learning, were normal in these mutants. Northern and Western blot analyses of mRNA and protein extracted from adult heads have revealed a complex lesion of the PKA-RI locus, including expression of a novel product and over- or underexpression of wild-type products in mutants. Western blot analysis revealed reductions in RI protein in mutants. PKA activity in the absence of exogenous cAMP also was significantly higher than normal in homogenates from mutant adult heads. These two mutant alleles failed to complement each other for each of these phenotypic defects, eliminating second-site mutations as a possible explanation. These results establish a role for an RI regulatory subunit of PKA in Pavlovian olfactory conditioning.
Notes:
1996
L C Ryner, S F Goodwin, D H Castrillon, A Anand, A Villella, B S Baker, J C Hall, B J Taylor, S A Wasserman (1996)  Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene.   Cell 87: 6. 1079-1089 Dec  
Abstract: Sexual orientation and courtship behavior in Drosophila are regulated by fruitless (fru), the first gene in a branch of the sex-determination hierarchy functioning specifically in the central nervous system (CNS). The phenotypes of new fru mutants encompass nearly all aspects of male sexual behavior. Alternative splicing of fru transcripts produces sex-specific proteins belonging to the BTB-ZF family of transcriptional regulators. The sex-specific fru products are produced in only about 500 of the 10(5) neurons that comprise the CNS. The properties of neurons expressing these fru products suggest that fru specifies the fates or activities of neurons that carry out higher order control functions to elicit and coordinate the activities comprising male courtship behavior.
Notes:
S A Davies, S F Goodwin, D C Kelly, Z Wang, M A Sözen, K Kaiser, J A Dow (1996)  Analysis and inactivation of vha55, the gene encoding the vacuolar ATPase B-subunit in Drosophila melanogaster reveals a larval lethal phenotype.   J Biol Chem 271: 48. 30677-30684 Nov  
Abstract: Vacuolar ATPases play major roles in endomembrane and plasma membrane proton transport in eukaryotes. A Drosophila melanogaster cDNA encoding vha55, the 55-kDa vacuolar ATPase (V-ATPase) regulatory B-subunit, was characterized and mapped to 87C2-4 on chromosome 3R. A fly line was identified that carried a single lethal P-element insertion within the coding portion of gene, and its LacZ reporter gene revealed elevated expression in Malpighian tubules, rectum, antennal palps, and oviduct, regions where V-ATPases are believed to play a plasma membrane, rather than an endomembrane, role. The P-element vha55 insertion was shown to be allelic to a known lethal complementation group l(3)SzA (= l(3)87Ca) at 87C, for which many alleles have been described previously. Deletions of the locus have been shown to be larval lethal, whereas point mutations show a range of phenotypes from subvital to embryonic lethal, implying that severe alleles confer a partial dominant negative phenotype. The P-element null allele of vha55 was shown also to suppress ectopic sex combs in Polycomb males, suggesting that transcriptional silencing may be modulated by genes other than those with known homeotic or DNA binding functions.
Notes:
1994
J W Sentry, S F Goodwin, C D Milligan, A Duncanson, M Yang, K Kaiser (1994)  Reverse genetics of Drosophila brain structure and function.   Prog Neurobiol 42: 2. 299-308 Feb  
Abstract: A set of molecular genetic technologies are described, which will have far reaching consequences for the study of brain structure, function and development in Drosophila melanogaster. Site selected mutagenesis (a PCR-based screen for P-element insertion events) allows insertion mutants to be isolated for any cloned gene, and is being used in this laboratory to ask questions about the rolls of particular cellular components in learning and memory. Transposants have been isolated in genes encoding a regulatory (RI) and a catalytic (DCO) subunit of cAMP-dependent protein kinase, and in a gene encoding a Gi-like alpha subunit. The alternative use of I factors is described. The PKA RI homozygous mutants display a significant decrement in initial learning ability. Enhancer-trap strategies, for which the GAL-4 P-element system is particularly convenient, allow the identification of genes expressed in the developing fly brain. Strategies for the efficient detection of such events are described.
Notes:
M E Finbow, S F Goodwin, L Meagher, N J Lane, J Keen, J B Findlay, K Kaiser (1994)  Evidence that the 16 kDa proteolipid (subunit c) of the vacuolar H(+)-ATPase and ductin from gap junctions are the same polypeptide in Drosophila and Manduca: molecular cloning of the Vha16k gene from Drosophila.   J Cell Sci 107 ( Pt 7): 1817-1824 Jul  
Abstract: The 16 kDa proteolipid (subunit c) of the eukaryotic vacuolar H(+)-ATPase (V-ATPase) is closely related to the ductin polypeptide that forms the connexon channel of gap junctions in the crustacean Nephrops norvegicus. Here we show that the major protein component of Manduca sexta gap junction preparations is a 16 kDa polypeptide whose N-terminal sequence is homologous to ductin and is identical to the deduced sequence of a previously cloned cDNA from Manduca (Dow et al., Gene, 122, 355-360, 1992). We also show that a Drosophila melanogaster cDNA, highly homologous to the Manduca cDNA, can rescue Saccharomyces cerevisiae, defective in V-ATPase function, in which the corresponding yeast gene, VMA3, has been inactivated. Evidence is presented for a single genetic locus (Vha16) in Drosophila, which in adults at least contains a single transcriptional unit. Taken together, the data suggest that in Drosophila and Manduca, the same polypeptide is both the proteolipid subunit c component of the V-ATPase and the ductin component of gap junctions. The intron/exon structure of the Drosophila Vha16 is identical to that of a human Vha16 gene, and is consistent with an ancient duplication of an 8 kDa domain. A pilot study for gene inactivation shows that transposable P-elements can be easily inserted into the Drosophila ductin Vha16 gene. Although without phenotypic consequences, these can serve as a starting point for generation of null alleles.
Notes:
1992
J A Dow, S F Goodwin, K Kaiser (1992)  Analysis of the gene encoding a 16-kDa proteolipid subunit of the vacuolar H(+)-ATPase from Manduca sexta midgut and tubules.   Gene 122: 2. 355-360 Dec  
Abstract: Vacuolar ATPases (V-ATPases), originally characterised as components of endomembranes, have also been implicated in epithelial ion transport, both in vertebrates and in insects. The ATPase is particularly noteworthy in lepidopteran larvae, where it generates large transepithelial potential differences and short-circuit currents across the midgut epithelium. A cDNA library from Manduca sexta larval midguts and Malpighian tubules was screened with a Drosophila melanogaster cDNA encoding the 16-kDa proteolipid subunit of the V-ATPase, and a 1.4-kb cDNA sequenced in its entirety. The sequence contains a long open reading frame, encoding a putative peptide of 156 amino acids (aa) and with an M(r) of 15,967, in close agreement with values previously suggested by sodium dodecyl sulfate-polyacrylamide gels of M. sexta midgut proteins. Correspondence of the deduced aa sequence with those of other species, particularly D. melanogaster, was extremely close. Northern blots of M. sexta midgut mRNA at high stringency revealed two transcripts of 1.4 and 1.9 kb, whereas genomic Southern blots suggest that there is only a single copy of the gene in M. sexta. The possibility that members of the 16-kDa gene family might serve multiple roles in transport and membrane communication is discussed.
Notes:
1990
K Kaiser, S F Goodwin (1990)  "Site-selected" transposon mutagenesis of Drosophila.   Proc Natl Acad Sci U S A 87: 5. 1686-1690 Mar  
Abstract: Despite the wide range of techniques that can be brought to bear on the study of basic processes in Drosophila, there are still deficiencies in our armory. One of these is an ability to select mutants in cases where the gene is known and has been cloned, but where we are ignorant of the associated phenotype. We describe here a solution to this problem as applied to a model system, the singed (sn) locus. Our method is a combination of classical genetics and molecular biology: sib selection plus the polymerase chain reaction. We have used the method to isolate rare individuals with P-element-induced alleles of sn merely by recognition of the DNA structures induced at the locus by transposon insertion. Phenotypic criteria were used only retrospectively to verify our diagnoses. There are obvious implications of this technique for the mutagenesis of other organisms.
Notes:
Powered by PublicationsList.org.