hosted by
publicationslist.org
    
Steve Alam

alam@biochem.utah.edu

Journal articles

2008
 
DOI   
PMID 
Charles R Langelier, Virginie Sandrin, Debra M Eckert, Devin E Christensen, Viswanathan Chandrasekaran, Steven L Alam, Christopher Aiken, John C Olsen, Alak Kanti Kar, Joseph G Sodroski, Wesley I Sundquist (2008)  Biochemical characterization of a recombinant TRIM5alpha protein that restricts human immunodeficiency virus type 1 replication.   J Virol 82: 23. 11682-11694 Dec  
Abstract: The rhesus monkey intrinsic immunity factor TRIM5alpha(rh) recognizes incoming capsids from a variety of retroviruses, including human immunodeficiency virus type 1 (HIV-1) and equine infectious anemia virus (EIAV), and inhibits the accumulation of viral reverse transcripts. However, direct interactions between restricting TRIM5alpha proteins and retroviral capsids have not previously been demonstrated using pure recombinant proteins. To facilitate structural and mechanistic studies of retroviral restriction, we have developed methods for expressing and purifying an active chimeric TRIM5alpha(rh) protein containing the RING domain from the related human TRIM21 protein. This recombinant TRIM5-21R protein was expressed in SF-21 insect cells and purified through three chromatographic steps. Two distinct TRIM5-21R species were purified and shown to correspond to monomers and dimers, as analyzed by analytical ultracentrifugation. Chemically cross-linked recombinant TRIM5-21R dimers and mammalian-expressed TRIM5-21R and TRIM5alpha proteins exhibited similar sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobilities, indicating that mammalian TRIM5alpha proteins are predominantly dimeric. Purified TRIM5-21R had ubiquitin ligase activity and could autoubquitylate with different E2 ubiquitin conjugating enzymes in vitro. TRIM5-21R bound directly to synthetic capsids composed of recombinant HIV-1 CA-NC proteins and to authentic EIAV core particles. HIV-1 CA-NC assemblies bound dimeric TRIM5-21R better than either monomeric TRIM5-21R or TRIM5-21R constructs that lacked the SPRY domain or its V1 loop. Thus, our studies indicate that TRIM5alpha proteins are dimeric ubiquitin E3 ligases that recognize retroviral capsids through direct interactions mediated by the SPRY domain and demonstrate that these activities can be recapitulated in vitro using pure recombinant proteins.
Notes:
2007
 
DOI   
PMID 
Eiji Morita, Virginie Sandrin, Steven L Alam, Debra M Eckert, Steven P Gygi, Wesley I Sundquist (2007)  Identification of human MVB12 proteins as ESCRT-I subunits that function in HIV budding.   Cell Host Microbe 2: 1. 41-53 Jul  
Abstract: Human ESCRT-I is a multiprotein complex that plays essential roles in HIV budding and endosomal protein sorting. All ESCRT-I complexes contain three common subunits (TSG101, VPS28, and VPS37), and a fourth subunit of yeast ESCRT-I was recently identified (Mvb12p). We now demonstrate that two related human proteins (MVB12A and MVB12B) constitute the fourth class of metazoan ESCRT-I subunits, despite lacking identifiable sequence homology to Mvb12p. Hydrodynamic studies indicate that soluble human ESCRT-I complexes contain one copy of each of the four subunit types. MVB12 subunits associate with the core region of the binary TSG101-VPS37 complex through conserved C-terminal sequence elements. Both MVB12 depletion and overexpression inhibit HIV-1 infectivity and induce unusual viral assembly defects, including aberrant virion morphologies and altered viral Gag protein processing. Taken together, these studies define the composition of human ESCRT-I complexes and indicate that the MVB12 subunits play a unique role in regulating ESCRT-mediated virus budding.
Notes:
 
DOI   
PMID 
Meda M Higa, Steven L Alam, Wesley I Sundquist, Katharine S Ullman (2007)  Molecular characterization of the Ran-binding zinc finger domain of Nup153.   J Biol Chem 282: 23. 17090-17100 Jun  
Abstract: The nuclear pore complex is the gateway for selective traffic between the nucleus and cytoplasm. To learn how building blocks of the pore can create specific docking sites for transport receptors and regulatory factors, we have studied a zinc finger module present in multiple copies within the nuclear pores of higher eukaryotes. All four zinc fingers of human Nup153 were found to bind the small GTPase Ran with dissociation constants ranging between 5 and 40 mum. In addition a fragment of Nup153 encompassing the four tandem zinc fingers was found to bind Ran with similar affinity. NMR structural studies revealed that a representative Nup153 zinc finger adopts the same zinc ribbon structure as the previously characterized Npl4 NZF module. Ran binding was mediated by a three-amino acid motif (Leu(13)/Val(14)/Asn(25)) located within the two zinc coordination loops. Nup153 ZnFs bound GDP and GTP forms of Ran with similar affinities, indicating that this interaction is not influenced by a nucleotide-dependent conformational switch. Taken together, these studies elucidate the Ran-binding interface on Nup153 and, more broadly, provide insight into the versatility of this zinc finger binding module.
Notes:
2006
 
DOI   
PMID 
Rachele Arrigoni, Steven L Alam, Joseph A Wamstad, Vivian J Bardwell, Wesley I Sundquist, Nicole Schreiber-Agus (2006)  The Polycomb-associated protein Rybp is a ubiquitin binding protein.   FEBS Lett 580: 26. 6233-6241 Nov  
Abstract: The Rybp protein has been promoted as a Polycomb group (PcG)-associated protein, but its molecular function has remained elusive. Here we show that Rybp is a novel ubiquitin binding protein and is itself ubiquitinated. The Rybp interacting PcG protein Ring1B, a known ubiquitin E3 ligase, promotes Rybp ubiquitination. Moreover, one target of Rybp's ubiquitin binding domain appears to be ubiquitinated histone H2A; this histone is a substrate for Ring1B's E3 ligase activity in association with gene silencing processes. These findings on Rybp provide a further link between the ubiquitination system and PcG transcriptional repressors.
Notes:
 
DOI   
PMID 
Steven L Alam, Charles Langelier, Frank G Whitby, Sajjan Koirala, Howard Robinson, Christopher P Hill, Wesley I Sundquist (2006)  Structural basis for ubiquitin recognition by the human ESCRT-II EAP45 GLUE domain.   Nat Struct Mol Biol 13: 11. 1029-1030 Nov  
Abstract: The ESCRT-I and ESCRT-II complexes help sort ubiquitinated proteins into vesicles that accumulate within multivesicular bodies (MVBs). Crystallographic and biochemical analyses reveal that the GLUE domain of the human ESCRT-II EAP45 (also called VPS36) subunit is a split pleckstrin-homology domain that binds ubiquitin along one edge of the beta-sandwich. The structure suggests how human ESCRT-II can couple recognition of ubiquitinated cargoes and endosomal phospholipids during MVB protein sorting.
Notes:
2005
 
DOI   
PMID 
Anna Scott, Jason Gaspar, Melissa D Stuchell-Brereton, Steven L Alam, Jack J Skalicky, Wesley I Sundquist (2005)  Structure and ESCRT-III protein interactions of the MIT domain of human VPS4A.   Proc Natl Acad Sci U S A 102: 39. 13813-13818 Sep  
Abstract: The VPS4 AAA ATPases function both in endosomal vesicle formation and in the budding of many enveloped RNA viruses, including HIV-1. VPS4 proteins act by binding and catalyzing release of the membrane-associated ESCRT-III protein lattice, thereby allowing multiple rounds of protein sorting and vesicle formation. Here, we report the solution structure of the N-terminal VPS4A microtubule interacting and transport (MIT) domain and demonstrate that the VPS4A MIT domain binds the C-terminal half of the ESCRT-III protein, CHMP1B (Kd = 20 +/- 13 microM). The MIT domain forms an asymmetric three-helix bundle that resembles the first three helices in a tetratricopeptide repeat (TPR) motif. Unusual interhelical interactions are mediated by a series of conserved aromatic residues that form coiled-coil interactions between the second two helices and also pack against the conserved alanines that interdigitate between the first two helices. Mutational analyses revealed that a conserved leucine residue (Leu-64) on the third helix that would normally bind the fourth helix in an extended TPR is used to bind CHMP1B, raising the possibility that ESCRT-III proteins may bind by completing the TPR motif.
Notes:
2004
 
DOI   
PMID 
Yanan He, Steven L Alam, Simona V Proteasa, Yan Zhang, Emmanuel Lesuisse, Andrew Dancis, Timothy L Stemmler (2004)  Yeast frataxin solution structure, iron binding, and ferrochelatase interaction.   Biochemistry 43: 51. 16254-16262 Dec  
Abstract: The mitochondrial protein frataxin is essential for cellular regulation of iron homeostasis. Although the exact function of frataxin is not yet clear, recent reports indicate the protein binds iron and can act as a mitochondrial iron chaperone to transport Fe(II) to ferrochelatase and ISU proteins within the heme and iron-sulfur cluster biosynthetic pathways, respectively. We have determined the solution structure of apo yeast frataxin to provide a structural basis of how frataxin binds and donates iron to the ferrochelatase. While the protein's alpha-beta-sandwich structural motif is similar to that observed for human and bacterial frataxins, the yeast structure presented in this report includes the full N-terminus observed for the mature processed protein found within the mitochondrion. In addition, NMR spectroscopy was used to identify frataxin amino acids that are perturbed by the presence of iron. Conserved acidic residues in the helix 1-strand 1 protein region undergo amide chemical shift changes in the presence of Fe(II), indicating a possible iron-binding site on frataxin. NMR spectroscopy was further used to identify the intermolecular binding interface between ferrochelatase and frataxin. Ferrochelatase appears to bind to frataxin's helical plane in a manner that includes its iron-binding interface.
Notes:
 
DOI   
PMID 
Steven L Alam, Ji Sun, Marielle Payne, Brett D Welch, B Kelly Blake, Darrell R Davis, Hemmo H Meyer, Scott D Emr, Wesley I Sundquist (2004)  Ubiquitin interactions of NZF zinc fingers.   EMBO J 23: 7. 1411-1421 Apr  
Abstract: Ubiquitin (Ub) functions in many different biological pathways, where it typically interacts with proteins that contain modular Ub recognition domains. One such recognition domain is the Npl4 zinc finger (NZF), a compact zinc-binding module found in many proteins that function in Ub-dependent processes. We now report the solution structure of the NZF domain from Npl4 in complex with Ub. The structure reveals that three key NZF residues (13TF14/M25) surrounding the zinc coordination site bind the hydrophobic 'Ile44' surface of Ub. Mutations in the 13TF14/M25 motif inhibit Ub binding, and naturally occurring NZF domains that lack the motif do not bind Ub. However, substitution of the 13TF14/M25 motif into the nonbinding NZF domain from RanBP2 creates Ub-binding activity, demonstrating the versatility of the NZF scaffold. Finally, NZF mutations that inhibit Ub binding by the NZF domain of Vps36/ESCRT-II also inhibit sorting of ubiquitylated proteins into the yeast vacuole. Thus, the NZF is a versatile protein recognition domain that is used to bind ubiquitylated proteins during vacuolar protein sorting, and probably many other biological processes.
Notes:
2003
 
DOI   
PMID 
Bin Wang, Steven L Alam, Hemmo H Meyer, Marielle Payne, Timothy L Stemmler, Darrell R Davis, Wesley I Sundquist (2003)  Structure and ubiquitin interactions of the conserved zinc finger domain of Npl4.   J Biol Chem 278: 22. 20225-20234 May  
Abstract: Ubiquitylated proteins are directed into a large number of different cellular pathways through interactions with effector proteins that contain conserved ubiquitin binding motifs. Here, we report the solution structure and ubiquitin binding properties of one such motif, the Npl4 zinc finger or RanBP2/Nup358 zinc finger (NZF) domain. Npl4 NZF forms a compact module composed of four antiparallel beta-strands linked by three ordered loops. A single zinc ion is coordinated by four conserved cysteines from the first and third loops, which form two rubredoxin knuckles. Npl4 NZF binds specifically, but weakly, to free ubiquitin using a conserved 13TF14 dipeptide to interact with the "Ile-44" surface of ubiquitin. Our studies reveal the structure of this versatile class of protein binding domains and provide a means for identifying the subset of NZF domains likely to bind ubiquitin.
Notes:
 
DOI   
PMID 
Robert D Fisher, Bin Wang, Steven L Alam, Daniel S Higginson, Howard Robinson, Wesley I Sundquist, Christopher P Hill (2003)  Structure and ubiquitin binding of the ubiquitin-interacting motif.   J Biol Chem 278: 31. 28976-28984 Aug  
Abstract: Ubiquitylation is used to target proteins into a large number of different biological processes including proteasomal degradation, endocytosis, virus budding, and vacuolar protein sorting (Vps). Ubiquitylated proteins are typically recognized using one of several different conserved ubiquitin binding modules. Here, we report the crystal structure and ubiquitin binding properties of one such module, the ubiquitin-interacting motif (UIM). We found that UIM peptides from several proteins involved in endocytosis and vacuolar protein sorting including Hrs, Vps27p, Stam1, and Eps15 bound specifically, but with modest affinity (Kd = 0.1-1 mm), to free ubiquitin. Full affinity ubiquitin binding required the presence of conserved acidic patches at the N and C terminus of the UIM, as well as highly conserved central alanine and serine residues. NMR chemical shift perturbation mapping experiments demonstrated that all of these UIM peptides bind to the I44 surface of ubiquitin. The 1.45 A resolution crystal structure of the second yeast Vps27p UIM (Vps27p-2) revealed that the ubiquitin-interacting motif forms an amphipathic helix. Although Vps27p-2 is monomeric in solution, the motif unexpectedly crystallized as an antiparallel four-helix bundle, and the potential biological implications of UIM oligomerization are therefore discussed.
Notes:
2002
 
DOI   
PMID 
Owen Pornillos, Steven L Alam, Rebecca L Rich, David G Myszka, Darrell R Davis, Wesley I Sundquist (2002)  Structure and functional interactions of the Tsg101 UEV domain.   EMBO J 21: 10. 2397-2406 May  
Abstract: Human Tsg101 plays key roles in HIV budding and in cellular vacuolar protein sorting (VPS). In performing these functions, Tsg101 binds both ubiquitin (Ub) and the PTAP tetrapeptide 'late domain' motif located within the viral Gag protein. These interactions are mediated by the N-terminal domain of Tsg101, which belongs to the catalytically inactive ubiquitin E2 variant (UEV) family. We now report the structure of Tsg101 UEV and chemical shift mapping of the Ub and PTAP binding sites. Tsg101 UEV resembles canonical E2 ubiquitin conjugating enzymes, but has an additional N-terminal helix, an extended beta-hairpin that links strands 1 and 2, and lacks the two C-terminal helices normally found in E2 enzymes. PTAP-containing peptides bind in a hydrophobic cleft exposed by the absence of the C-terminal helices, whereas ubiquitin binds in a novel site surrounding the beta-hairpin. These studies provide a structural framework for understanding how Tsg101 mediates the protein-protein interactions required for HIV budding and VPS.
Notes:
 
DOI   
PMID 
Owen Pornillos, Steven L Alam, Darrell R Davis, Wesley I Sundquist (2002)  Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein.   Nat Struct Biol 9: 11. 812-817 Nov  
Abstract: The structural proteins of HIV and Ebola display PTAP peptide motifs (termed 'late domains') that recruit the human protein Tsg101 to facilitate virus budding. Here we present the solution structure of the UEV (ubiquitin E2 variant) binding domain of Tsg101 in complex with a PTAP peptide that spans the late domain of HIV-1 p6(Gag). The UEV domain of Tsg101 resembles E2 ubiquitin-conjugating enzymes, and the PTAP peptide binds in a bifurcated groove above the vestigial enzyme active site. Each PTAP residue makes important contacts, and the Ala 9-Pro 10 dipeptide binds in a deep pocket of the UEV domain that resembles the X-Pro binding pockets of SH3 and WW domains. The structure reveals the molecular basis of HIV PTAP late domain function and represents an attractive starting point for the design of novel inhibitors of virus budding.
Notes:
2001
 
DOI   
PMID 
Z Feng, M C Butler, S L Alam, S N Loh (2001)  On the nature of conformational openings: native and unfolded-state hydrogen and thiol-disulfide exchange studies of ferric aquomyoglobin.   J Mol Biol 314: 1. 153-166 Nov  
Abstract: Native-state amide hydrogen exchange (HX) of proteins in the presence of denaturant has provided valuable details on the structures of equilibrium folding intermediates. Here, we extend HX theory to model thiol group exchange (SX) in single cysteine-containing variants of sperm whale ferric aquomyoglobin. SX is complementary to HX in that it monitors conformational opening events that expose side-chains, rather than the main chain, to solvent. A simple two-process model, consisting of EX2-limited local structural fluctuations and EX1-limited global unfolding, adequately accounts for all HX data. SX is described by the same model except at very low denaturant concentrations and when the bulky labeling reagent 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) is used. Under these conditions SX can occur by a novel denaturant-dependent process. This anomalous behavior is not observed when the smaller labeling reagent methyl methanethiosulfonate is employed, suggesting that it reflects a denaturant-induced increase in the amplitudes of local structural fluctuations. It also is not seen in heme-free apomyoglobin, which may indicate that local openings are sufficiently large in the absence of denaturant to allow DTNB unhindered access. Differences in SX kinetics obtained using the two labeling reagents provide estimates of the sizes of local opening reactions at different sites in the protein. At all sequence positions examined except for position 73, the same opening event appears to facilitate exchange of both backbone amide and side-chain thiol groups. The C73 thiol group is exposed by a low-energy fluctuation that does not expose its amide group to exchange.
Notes:
1999
 
DOI   
PMID 
S L Alam, N M Wills, J A Ingram, J F Atkins, R F Gesteland (1999)  Structural studies of the RNA pseudoknot required for readthrough of the gag-termination codon of murine leukemia virus.   J Mol Biol 288: 5. 837-852 May  
Abstract: Retroviruses, such as murine leukemia virus (MuLV), whose gag and pol genes are in the same reading frame but separated by a UAG stop codon, require that 5-10 % of ribosomes decode the UAG as an amino acid and continue translation to synthesize the Gag-Pol fusion polyprotein. A specific pseudoknot located eight nucleotides 3' of the UAG is required for this redefinition of the UAG stop codon. The structural probing and mutagenic analyses presented here provide evidence that loop I of the pseudoknot is one nucleotide, stem II has seven base-pairs, and the nucleotides 3' of stem II are important for function. Stem II is more resistant to single-strand-specific probes than stem I. Sequences upstream of the UAG codon allow formation of two competing structures, a stem-loop and the pseudoknot.
Notes:
1998
 
PMID 
S L Alam, B F Volkman, J L Markley, J D Satterlee (1998)  Detailed NMR analysis of the heme-protein interactions in component IV Glycera dibranchiata monomeric hemoglobin-CO.   J Biomol NMR 11: 2. 119-133 Feb  
Abstract: Complete 13C, 15N, and 1H resonance assignments have been obtained for the recombinant, ferrous CO-ligated from of component IV monomeric hemoglobin from Glycera dibranchiata. This 15642 Da myoglobin-like protein contains a large number of glycine and alanine residues (47) and a heme prosthetic group. Coupling constant information has allowed the determination of chi(1) and chi(2) torsion angles, backbone phi angles, as well as 43 of 81 possible assignments to H beta 2/beta 3 pairs. The 13C alpha, 13 beta, 13C', and 1H alpha assignments yield a consensus chemical shift index (CSI) that, in combination with NOE information and backbone torsion angles, defines seven distinct helical regions for the protein's global architecture. Discrepancies between the CSI and NOE/3JHNH alpha-based secondary structure definitions have been attributed to heme ring current shifts on the basis of calculations from a model structure [Alam et al. (1994) J. Protein Chem., 13, 151-164]. The agreement can be improved by correcting the 1H alpha chemical shifts for the ring current contributions. Because the holoprotein was assembled from isotopically enriched globin and natural isotope-abundance heme, data from 13C-filtered/13C-edited and 13C-filtered/13C-filtered 2D NOESY experiments could be used to determine complete heme proton assignments and to position the heme within the protein. The results confirm the unusual presence of Phe31 (B10) and Leu58 (E7) side chains near the heme ligand binding site which may alter the polarity and steric environment and thus the functional properties of this protein.
Notes:
 
DOI   
PMID 
B F Volkman, S L Alam, J D Satterlee, J L Markley (1998)  Solution structure and backbone dynamics of component IV Glycera dibranchiata monomeric hemoglobin-CO.   Biochemistry 37: 31. 10906-10919 Aug  
Abstract: The solution structure and backbone dynamics of the recombinant, ferrous CO-ligated form of component IV monomeric hemoglobin from Glycera dibranchiata (GMH4CO) have been characterized by NMR spectroscopy. Distance geometry and simulated annealing calculations utilizing a total of 2550 distance and torsion angle constraints yielded an ensemble of 29 structures with an overall average backbone rmsd of 0.48 A from the average structure. Differences between the solution structure and a related crystal structure are confined to regions of lower precision in either the NMR or X-ray structure, or in regions where the amino acid sequences differ. 15N relaxation measurements at 76.0 and 60.8 MHz were analyzed with an extended model-free approach, and revealed low-frequency motions in the vicinity of the heme, concentrated in the F helix. Amide proton protection factors were obtained from H-D amide exchange measurements on 15N-labeled protein. Patterns in the backbone dynamics and protection factors were shown to correlate with regions of heterogeneity and disorder in the ensemble of NMR structures and with large crystallographic B-factors in the X-ray structures. Surprisingly, while the backbone atoms of the F helix have higher rmsds and larger measures of dynamics on the microsecond to millisecond time scale than the other helices, amide protection factors for residues in the F helix were observed to be similar to those of the other helices. This contrasts with H-D amide exchange measurements on sperm whale myoglobin which indicated low protection for the F helix (S. N. Loh and B. F. Volkman, unpublished results). These results for GMH4 suggest a model in which the F helix undergoes collective motions as a relatively rigid hydrogen-bonded unit, possibly pivoting about a central position near residue Val87.
Notes:
1995
 
PMID 
S L Alam, J D Satterlee, J M Mauro, T L Poulos, J E Erman (1995)  Proton NMR studies of cytochrome c peroxidase mutant N82A: hyperfine resonance assignments, identification of two interconverting enzyme ofecies, quantitating the rate of interconversion, and determination of equilibrium constants.   Biochemistry 34: 47. 15496-15503 Nov  
Abstract: The cyanide-ligated form of the baker's yeast cytochrome c peroxidase mutant bearing the mutation Asn82-->Ala82 ([N82A]CcPCN) has been studied by proton NMR spectroscopy. This mutation alters an amino acid that forms a hydrogen bond to His52, the distal histidine residue that interacts in the heme pocket with heme-bound ligands. His52 is a residue critical to cytochrome c peroxidase's normal function. Proton hyperfine resonance assignments have been made for the cyanide-ligated form of the mutant by comparison with 1-D and NOESY spectra of the wild-type native enzyme. For [N82A]CcPCN, proton NMR spectra reveal two significant phenomena. First, similar to results published for the related mutant [N82D]CcPCN [Satterlee, J. D., et al. (1994) Eur. J. Biochem. 244, 81-87], for Ala82 mutation disrupts the hydrogen bond between His52 and the heme-ligated CN. Second, four of the 24 resolved hyperfine-shifted resonances are doubled in the mutant enzyme's proton spectrum, leading to the concept that the heme active site environment is dynamically microheterogeneous on a very localized scale. Two magnetically inequivalent enzyme forms are detected in a pure enzyme preparation. Varying temperature causes the two enzyme forms to interconvert. Magnetization transfer experiments further document this interconversion between enzyme forms and have been used to determine that the rate of interconversion is 250 (+/- 53) s-1. The equilibrium constant at 20 degrees C is 1.5. Equilibrium constants have been calculated at various temperatures between 5 and 29 degrees C leading to the following values: delta H = 60 kJ mol-1; delta S = 0.20 kJ K-1 mol-1.
Notes:
1994
 
PMID 
S L Alam, J D Satterlee, C G Edmonds (1994)  Complete amino acid sequence of the Glycera dibranchiata monomer hemoglobin component IV: structural implications.   J Protein Chem 13: 2. 151-164 Feb  
Abstract: The globin derived from the monomer Component IV hemoglobin of the marine amnelid, Glycera dibranchiata, has been completely sequenced, and the resulting information has been used to create a structural model of the protein. The most important result is that the consensus sequence of Component IV differs by 3 amino acids from a cDNA-predicted amino acid sequence thought earlier to encode the Component IV hemoglobin. This work reveals that the histidine (E7), typical of most heme-containing globins, is replaced by leucine in Component IV. Also significant is that this sequence is not identical to any of the previously reported Glycera dibranchiata monomer hemoglobin sequences, including the sequence from a previously reported crystal structure, but has high identity to all. A three-dimensional structural model for monomer Component IV hemoglobin was constructed using the published 1.5 A crystal structure of a monomer hemoglobin from Glycera dibranchiata as a template. The model shows several interesting features: (1) a Phe31 (B10) that is positioned in the active site; (2) a His39 occurs in an interhelical region occupied by Pro in 98.2% of reported globin sequences; and (3) a Met41 is found at a position that emerges from this work as a previously unrecognized heme contact.
Notes:
 
PMID 
J D Satterlee, S L Alam, J M Mauro, J E Erman, T L Poulos (1994)  The effect of the Asn82-->Asp mutation in yeast cytochrome c peroxidase studied by proton NMR spectroscopy.   Eur J Biochem 224: 1. 81-87 Aug  
Abstract: Proton NMR studies of the mutant of baker's yeast cytochrome c peroxidase-cyanide with the Asn 82-->Asp mutation ([N82D]cytochrome c peroxidase-CN) are presented and compared to the wild-type enzyme. This mutation alters an amino acid that forms a hydrogen bond to His52, the distal histidine residue that interacts in the heme pocket with heme-bound ligands. His52 is an important participant in the initial hydrogen peroxide decomposition step of cytochrome c peroxidase. In wild-type cytochrome c peroxidase-CN, His52 hydrogen bonds to the neighboring Asn82 peptide carbonyl group and to heme-coordinated cyanide. His52 thus manifests itself as an extensively hydrogen bonded histidinium moiety. The principal result from this study is the observation that three hyperfine-shifted resonances disappear from the spectrum of [N82D] cytochrome c peroxidase-CN compared to the wild-type enzyme. All three absent resonances in [N82D]cytochrome c peroxidase-CN belong to His52 and this leads to the conclusion that the result of the mutation has been elimination of the His52-Asn82 and His52-heme-coordinated cyanide hydrogen bonds.
Notes:
 
PMID 
S L Alam, D P Dutton, J D Satterlee (1994)  Expression of recombinant monomer hemoglobins (component IV) from the marine annelid Glycera dibranchiata: evidence for primary sequence positional regulation of heme rotational disorder.   Biochemistry 33: 34. 10337-10344 Aug  
Abstract: A description of the efficient high-level expression of the monomer hemoglobin (GMG4) from Glycera dibranchiata is presented. The cDNA described by Simons and Satterlee [Simons, P.C., & Satterlee, J.D. (1989) Biochemistry 28, 8525-8530] was subcloned into an expression system, and conditions were found that led to the production of large amounts of soluble apoprotein (rec-gmg). These conditions included lowering the temperature during the induction period and growth in a rich medium with a higher ionic strength. Characterization of this reconstituted recombinant protein showed that it was not identical to the native GMH4 protein. Both UV-visible and 1H NMR data indicated differences within the holoprotein (rec-gmh) heme pocket compared to the native protein, the major difference being that two nonidentical heme orientations are significantly populated in rec-gmh. This phenomenon has been seen previously in other heme proteins, where these heme orientational isomers are described by a 180-deg rotation about the heme alpha-gamma meso axis. This work prompted the production of a complete chemical sequence for the native GMH4 [Alam S.L., Satterlee, J. D., & Edmonds, C. G. (1994) J. Protein Chem. 13, 151-164], which showed that the expressed rec-gmg protein differed at three primary sequence positions (41, 95, and 123) from the native component IV globin (GMG4). Subsequently, we have produced the triple-revertant mutations required to express the recombinant wild-type protein (recGMG4). The physical characteristics of the active site in the holoprotein (recGMH4) are identical to those of the native protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Notes:
 
PMID 
S L Alam, J D Satterlee (1994)  Complete heme proton hyperfine resonance assignments of the Glycera dibranchiata component IV metcyano monomer hemoglobin.   Biochemistry 33: 13. 4008-4018 Apr  
Abstract: Monomer hemoglobin component IV is one of three major myoglobin-like proteins found in the erythrocytes of the marine annelid Glycera dibranchiata. Unlike myoglobin, all three of these monomer hemoglobin components lack the distal histidine, which is replaced by leucine. This substitution alters the protein's functional properties due to its proximity to the heme ligand binding site. As the initial step toward a full NMR characterization of this protein, a complete set of self-consistent proton NMR assignments for the heme and the proximal histidine of the paramagnetic, metcyano form of native component IV (metGMH4CN) is presented. These assignments relied upon a combination of one- and two-dimensional NMR spectroscopy, including nonselective spin-lattice relaxation time measurements. The metcyano form has been chosen for several reasons: (1) The heme paramagnetism acts as an intrinsic shift reagent which aids in making individual resonance assignments for the heme and neighboring amino acids in the protein's ligand binding site. (2) Heme paramagnetism also enhances proton nuclear relaxation rates, thereby allowing two-dimensional NMR experiments to be carried out at very rapid repetition rates (i.e., 5 s-1). (3) The heme proton hyperfine resonance pattern for this paramagnetic form of wild-type monomer hemoglobin component IV provides an analytical reference for the integrity of the heme active site. This is anticipated to facilitate rapid analysis of subsequently produced recombinant derivatives of this protein. (4) The cyanide-ligated protein has a heme pocket structure similar to those of the O2- and CO-ligated forms of the physiologically important, reduced form of the protein, so that the heme and proximal histidine proton assignments will serve as a basis for further assignments within the heme binding site. Complete assignments, in combination with recombinant derivatives of this monomer hemoglobin, will give further insight into local interactions that influence ligand binding kinetics and heme orientational isomerism.
Notes:
Powered by publicationslist.org.