hosted by
publicationslist.org
    
Steve Meaney

steve.meaney@ki.se

Journal articles

2007
 
DOI   
PMID 
Steve Meaney, Maura Heverin, Ute Panzenboeck, Lena Ekström, Magnus Axelsson, Ulla Andersson, Ulf Diczfalusy, Irina Pikuleva, John Wahren, Wolfgang Sattler, Ingemar Björkhem (2007)  Novel route for elimination of brain oxysterols across the blood-brain barrier: conversion into 7alpha-hydroxy-3-oxo-4-cholestenoic acid.   J Lipid Res 48: 4. 944-951 Apr  
Abstract: Recently, we demonstrated a net blood-to-brain passage of the oxysterol 27-hydroxycholesterol corresponding to 4-5 mg/day. As the steady-state levels of this sterol are only 1-2 mug/g brain tissue, we hypothesized that it is metabolized and subsequently eliminated from the brain. To explore this concept, we first measured the capacity of in vitro systems representing the major cell populations found in the brain to metabolize 27-hydroxycholesterol. We show here that 27-hydroxycholesterol is metabolized into the known C(27) steroidal acid 7alpha-hydroxy-3-oxo-4-cholestenoic acid by neuronal cell models only. Using an in vitro model of the blood-brain barrier, we demonstrate that 7alpha-hydroxy-3-oxo-4-cholestenoic acid is efficiently transferred across monolayers of primary brain microvascular endothelial cells. Finally, we measured the concentration of 7alpha-hydroxy-3-oxo-4-cholestenoic acid in plasma from the internal jugular vein and brachial artery of healthy volunteers. Calculation of the arteriovenous concentration difference revealed a significant in vivo flux of this steroid from the brain into the circulation in human. Together, these studies identify a novel metabolic route for the elimination of 27-hydroxylated sterols from the brain. Given the emerging connections between cholesterol and neurodegeneration, this pathway may be of importance for the development of these conditions.
Notes:
 
DOI   
PMID 
Heverin, Meaney, Brafman, Shafir, Olin, Shafaati, von Bahr, Larsson, Lövgren-Sandblom, Diczfalusy, Parini, Feinstein, Björkhem (2007)  Studies on the Cholesterol-Free Mouse. Strong Activation of LXR-Regulated Hepatic Genes When Replacing Cholesterol With Desmosterol.   Arterioscler Thromb Vasc Biol Aug  
Abstract: OBJECTIVE: Characterization of cholesterol homeostasis in male mice with a genetic inactivation of 3beta-hydroxysteroid-Delta(24)-reductase, causing replacement of almost all cholesterol with desmosterol. METHODS AND RESULTS: There was an increase in hepatic sterol synthesis and markedly increased fecal loss of neutral sterols. Fecal excretion of bile acids was similar in knockout mice and in controls. The composition of bile acids was changed, with reduced formation of cholic acid. It was shown that both Cyp7a1 and Cyp27a1 are active toward desmosterol, consistent with the formation of normal bile acids from this steroid. The levels of plant sterols were markedly reduced. Hepatic mRNA levels of 3-hydroxy-3-methylglutaryl (HMG) coenzyme A (CoA) reductase, Srebp-1c, Srebp-2, Cyp7a1, Abcg5, Abcg8, and Fas were all significantly increased. CONCLUSIONS: The changes in hepatic mRNA levels in combination with increased biliary and fecal excretion of neutral steroids, reduced tissue levels of plant sterols, increased plasma levels of triglyceride-rich VLDL, are consistent with a strong activation of LXR-targeted genes. The markedly increased fecal loss of neutral sterols may explain the fact that the Dhcr24(-/-) mice do not accumulate dietary cholesterol. The study illustrates the importance of the integrity of the cholesterol structure-presence of a double bond in the steroid side-chain is compatible with life but is associated with serious disturbances in sterol homeostasis.
Notes:
 
DOI   
PMID 
D Famer, S Meaney, M Mousavi, A Nordberg, I Björkhem, M Crisby (2007)  Regulation of alpha- and beta-secretase activity by oxysterols: cerebrosterol stimulates processing of APP via the alpha-secretase pathway.   Biochem Biophys Res Commun 359: 1. 46-50 Jul  
Abstract: The cholesterol 24-hydroxylase encoded by the gene CYP46 is expressed almost exclusively in central nervous system (CNS) neurons and catalyzes the formation of 24S-hydroxycholesterol (24S-OHC) from cholesterol. This conversion corresponds to a major pathway for excretion of excess cholesterol from the brain. There is a significant flux of another oxysterol, 27-hydroxycholesterol (27-OHC) from the circulation into the brain. Polymorphisms within the CYP46A1 gene have been associated with Alzheimer's disease (AD) incidence. In this study, we examined the effects of 24S-OHC and 27-OHC on the alpha- and beta-secretase activity in the human neuroblastoma cell line SH-SY5Y. Furthermore, we examined the effects of the two oxysterols on the levels of extra- and intracellular proteins of secreted APPalpha (sAPPalpha). Our findings suggest that 24S-OHC may exert a unique modulatory effect on APP processing and that this oxysterol increases the alpha-secretase activity as well as the alpha/beta-secretase activity ratio. The possibility is discussed that the ratio between 24S-OHC and 27-OHC is of importance for the generation of amyloid in the brain.
Notes:
 
DOI   
PMID 
Charlotte Murphy, Ann Marie Murray, Steve Meaney, Mats Gåfvels (2007)  Regulation by SREBP-2 defines a potential link between isoprenoid and adenosylcobalamin metabolism.   Biochem Biophys Res Commun 355: 2. 359-364 Apr  
Abstract: Mevalonate kinase (MVK) catalyses an early step in cholesterol biosynthesis converting mevalonate to phosphomevalonate. Cob(I)alamin adenosyltransferase (MMAB) converts cob(I)alamin to adenosylcobalamin, functionally required for mitochondrial methylmalonyl-CoA mutase activity and succinyl-CoA formation. These two synthenic genes are found in a head-to-head formation on chromosome 12 in man and chromosome 5 in mouse. The 330bp intergenic region showed several conserved NF-Y sites indicative of potential bidirectional regulatory SREBP synergism. Both MVK and MMAB appear to be regulated in a similar manner, to a large extent by SREBP-2, since their tissue expression pattern was similar and both genes were suppressed by an excess of cholesterol as well as SREBP-2 knockdown. Statin treatment in mice upregulated both Mvk and Mmab mRNA levels indicating that this treatment may be useful in inborn errors of cblB complementation associated with methylmalonic aciduria as well as hyper IgD and periodic fever syndrome (HIDS).
Notes:
 
DOI   
PMID 
Ute Panzenboeck, Ulla Andersson, Magnus Hansson, Wolfgang Sattler, Steve Meaney, Ingemar Björkhem (2007)  On the mechanism of cerebral accumulation of cholestanol in patients with cerebrotendinous xanthomatosis.   J Lipid Res 48: 5. 1167-1174 May  
Abstract: The most serious consequence of sterol 27-hydroxylase deficiency in humans [cerebrotendinous xanthomatosis (CTX)] is the development of cholestanol-containing brain xanthomas. The cholestanol in the brain may be derived from the circulation or from 7alpha-hydroxylated intermediates in bile acid synthesis, present at 50- to 250-fold increased levels in plasma. Here, we demonstrate a transfer of 7alpha-hydroxy-4-cholesten-3-one across cultured porcine brain endothelial cells (a model for the blood-brain barrier) that is approximately 100-fold more efficient than the transfer of cholestanol. Furthermore, there was an efficient conversion of 7alpha-hydroxy-4-cholesten-3-one to cholestanol in cultured neuronal and glial cells as well as in monocyte-derived macrophages of human origin. It is concluded that the continuous intracellular production of cholestanol from a bile acid precursor capable of rapidly passing biomembranes, including the blood-brain barrier, is likely to be of major importance for the accumulation of cholestanol in patients with CTX. Such a mechanism also fits well with the observation that treatment with chenodeoxycholic acid, which normalizes the level of the bile acid precursor, results in a reduction of cholestanol-containing xanthomas even in the brain.
Notes:
 
DOI   
PMID 
M Hansson, M Olin, C - H Floren, S von Bahr, F van't Hooft, S Meaney, G Eggertsen, I Björkhem (2007)  Unique patient with cerebrotendinous xanthomatosis. Evidence for presence of a defect in a gene that is not identical to sterol 27-hydroxylase.   J Intern Med 261: 5. 504-510 May  
Abstract: Cerebrotendinous xanthomatosis (CTX) is a rare autosomal recessive disorder believed to be exclusively caused by mutations in the CYP27A1 gene coding for the enzyme sterol 27-hydroxylase. Common findings in CTX are tendon xanthomas, cataracts and progressive neurological dysfunction. Here, we characterize an adult female patient with tendon xanthomas and classic biochemical findings of CTX (i.e. high levels of bile alcohols and cholestanol and extremely low levels of 27-hydroxycholesterol in plasma). Additionally, sterol 27-hydroxylase activity in cultured monocyte-derived macrophages from this patient was <5% of normal. Sequencing the CYP27A1 gene uncovered that the patient is heterozygous for two previously undescribed base substitutions in exon 8, C478A and C479A, which are expected to affect the haeme-binding domain of the enzyme. When expressed in HEK293 cells, the corresponding protein had only 8% of normal enzymatic activity. No other mutation was found in the open reading frame of the CYP27A1 gene, intron-exon boundaries or in the 5'-untranslated region up to 5000 bp distal to the translational start site. Sequencing mRNA isolated from leucocytes from the patient revealed a 1 : 1 ratio of mutated and nonmutated species, with total mRNA levels that were not significantly different from the controls. It is concluded that the patient is heterozygous for two mutations affecting one allele of the CYP27A1 gene and with at least one additional yet undefined gene that is of critical importance for the activity of sterol 27-hydroxylase.
Notes:
2006
 
DOI   
PMID 
I Björkhem, M Heverin, V Leoni, S Meaney, U Diczfalusy (2006)  Oxysterols and Alzheimer's disease.   Acta Neurol Scand Suppl 185: 43-49  
Abstract: There is a clear link between cholesterol turnover and neurodegenerative diseases and hypercholesterolemia is an established risk factor for Alzheimer's disease (AD). The failure to demonstrate a transfer of cholesterol from the circulation into the brain in humans and experimental animals makes it difficult to explain the link between hypercholesterolemia and AD. In contrast to cholesterol itself, side-chain oxidized cholesterol metabolites such as 24S-hydroxycholesterol and 27-hydroxycholesterol are able to pass the blood-brain barrier (BBB). Formation of 24S-hydroxycholesterol is the quantitatively most important mechanism for elimination of cholesterol from the brain and we recently demonstrated a significant net uptake of 27-hydroxycholesterol by the brain from the circulation. We have also shown that patients with AD have increased brain levels of 27-hydroxycholesterol, which may affect the production of beta-amyloid in the brain. The levels of 27-hydroxycholesterol in the circulation are correlated with the levels of cholesterol and the possibility must be considered that the flux of 27-hydroxycholesterol into the brain is the missing link between hypercholesterolemia and Alzheimer's disease. Current knowledge about the role of the two oxysterols for cholesterol homeostasis in the brain as well as their diagnostic potential are reviewed.
Notes:
 
DOI   
PMID 
Yoshihiko Ohyama, Steve Meaney, Maura Heverin, Lena Ekström, Anat Brafman, Millicent Shafir, Ulla Andersson, Maria Olin, Gösta Eggertsen, Ulf Diczfalusy, Elena Feinstein, Ingemar Björkhem (2006)  Studies on the transcriptional regulation of cholesterol 24-hydroxylase (CYP46A1): marked insensitivity toward different regulatory axes.   J Biol Chem 281: 7. 3810-3820 Feb  
Abstract: Mammalian CNS contains a disproportionally large and remarkably stable pool of cholesterol. Despite an efficient recycling there is some requirement for elimination of brain cholesterol. Conversion of cholesterol into 24S-hydroxycholesterol by the cholesterol 24-hydroxylase (CYP46A1) is the quantitatively most important mechanism. Based on the protein expression and plasma levels of 24S-hydroxycholesterol, CYP46A1 activity appears to be highly stable in adults. Here we have made a structural and functional characterization of the promoter of the human CYP46A1 gene. No canonical TATA or CAAT boxes were found in the promoter region. Moreover this region had a high GC content, a feature often found in genes considered to have a largely housekeeping function. A broad spectrum of regulatory axes using a variety of promoter constructs did not result in a significant transcriptional regulation. Oxidative stress caused a significant increase in transcriptional activity. The possibility of a substrate-dependent transcriptional regulation was explored in vivo in a sterol-deficient mouse model (Dhcr24 null) in which almost all cholesterol had been replaced with desmosterol, which is not a substrate for CYP46A1. Compared with heterozygous littermates there was no statistically significant difference in the mRNA levels of Cyp46a1. During the first 2 weeks of life in the wild-type mouse, however, a significant increase of Cyp46a1 mRNA levels was found, in parallel with an increase in 24S-hydroxycholesterol level and a reduction of cholesterol synthesis. The failure to demonstrate a significant transcriptional regulation under most conditions is discussed in relation to the turnover of brain and neuronal cholesterol.
Notes:
2005
 
DOI   
PMID 
Maura Heverin, Steve Meaney, Dieter Lütjohann, Ulf Diczfalusy, John Wahren, Ingemar Björkhem (2005)  Crossing the barrier: net flux of 27-hydroxycholesterol into the human brain.   J Lipid Res 46: 5. 1047-1052 May  
Abstract: Side chain oxidized oxysterols have a unique ability to traverse lipophilic membranes. We tested the hypothesis that there is a net flux of 27-hydroxycholesterol from the circulation into the brain using plasma samples collected from the internal jugular vein and an artery of healthy male volunteers. Two independent studies were performed, one in which total levels of 27-hydroxycholesterol were measured and one in which the free fraction of 27-hydroxycholesterol was measured. In the majority of subjects studied, the level of 27-hydroxycholesterol was higher in the artery than in the vein, and uptake from the circulation was calculated to be about 5 mg/24 h. The distribution of 27-hydroxycholesterol in human brain was found to be consistent with an extracerebral origin, with a concentration gradient from the white to the gray matter--a situation opposite that of 24S-hydroxycholesterol, which os exclusively formed in brain. In view of the fact that the blood-brain barrier is impermeable to cholesterol and that 27-hydroxycholesterol is a potent regulator of several cholesterol-sensitive genes, the flux of 27-hydroxycholesterol into the brain may be and important link between intra- and extracerebral cholesterol homeostasis.
Notes:
 
DOI   
PMID 
Kirsten M Robertson, Gertrud U Schuster, Knut R Steffensen, Outi Hovatta, Steve Meaney, Kjell Hultenby, Lisen C Johansson, Konstantin Svechnikov, Olle Söder, Jan-Ake Gustafsson (2005)  The liver X receptor-{beta} is essential for maintaining cholesterol homeostasis in the testis.   Endocrinology 146: 6. 2519-2530 Jun  
Abstract: The liver X receptor (LXR)alpha and -beta has been found to play a central role in maintaining cellular cholesterol homeostasis. In this study we comprehensively investigated the effect of deleting LXRalpha and -beta on testicular morphology and function. In the absence of LXRbeta, excessive cholesterol accumulated in the Sertoli cells from 2.5 months, resulting in severe cellular disruption and dysregulation of spermatogenesis by 10 months of age. This correlated with gene expression analyses that clearly indicated that LXRbeta was the dominant transcript in the testis Although the LXRalpha(-/-) testis was normal, the LXRalpha(-/-)beta(-/-) testis presented with a more severe phenotype than the LXRbeta(-/-) mice, and males were infertile by 4 months of age, indicating LXRalpha may partially rescue the testicular phenotype. Although Leydig cells did not accumulate excessive cholesterol, declining serum and intratesticular androgen levels with age suggested that these cells were in fact less functional. Treatment of a Sertoli cell line with the LXR agonist T0901317 led to increased expression of known LXR target genes like ATP binding cassette-G1 and sterol regulatory binding protein-1c; similar results were observed in wild-type testis after in vivo administration, suggesting the LXR is functioning in the same way as in other tissues. Ordinarily increased levels of cholesterol activate intracellular sensors to decrease these levels; however, the increasing amount of cholesterol in the Sertoli cells indicates improper control of cholesterol metabolism when LXRbeta is absent. Although the precise molecular mechanism at this time remains unclear, our study highlights the crucial role for LXRbeta in retaining cholesterol homeostasis in Sertoli cells.
Notes:
 
DOI   
PMID 
Steve Meaney (2005)  Is C-26 hydroxylation an evolutionarily conserved steroid inactivation mechanism?   FASEB J 19: 10. 1220-1224 Aug  
Abstract: Sterols are essential components of virtually all higher eukaryotic organisms, though the exact identity of the dominating sterol varies between species, from the C-27 of cholesterol in vertebrates to the C-28 and C-29 sterols of plants and invertebrates. In addition to their role as structural components of cell membranes these sterols are also converted into a variety of biologically active hormones. This conversion generally involves modifications of the basic structure of the sterol by dealkylation, hydroxylation and/or isomerization. Recent studies have demonstrated that irreversible inactivation of both plant and insect hormones is achieved by a specific C-26 hydroxylation. The concept of sterol deactivation by 26-hydroxylation appears to be an example of an evolutionarily conserved mechanism that has persisted despite the widely varying requirements for sterols in the species where it has been detected.
Notes:
2004
 
DOI   
PMID 
Steve Meaney, Tracey L Bonfield, Magnus Hansson, Amir Babiker, Mani S Kavuru, Mary Jane Thomassen (2004)  Serum cholestenoic acid as a potential marker of pulmonary cholesterol homeostasis: increased levels in patients with pulmonary alveolar proteinosis.   J Lipid Res 45: 12. 2354-2360 Dec  
Abstract: The conversion of cholesterol into the more polar metabolites 27-hydroxycholesterol (27-OH) and cholestenoic acid by the cytochrome P450 sterol 27-hydroxylase is a cholesterol-removal mechanism used by almost all cells. Most of the cholestenoic acid present in the circulation originates from the lung, and it has been suggested that sterol 27-hydroxylase is of particular importance for cholesterol homeostasis in this organ. As an example of pulmonary cholesterol accumulation, a known disorder of surfactant homeostasis, pulmonary alveolar proteinosis (PAP), was studied. Analysis of bronchoalveolar lavage fluid from PAP patients revealed a significant accumulation of the cholesterol metabolites cholestenoic acid and 27-OH. This pattern was recapitulated in serum, with a significant increase in the levels of both cholestenoic acid (P=0.003) and 27-OH (P=0.017) in PAP patients compared with healthy controls. Analysis of PAP alveolar macrophages did not reveal a significant change in mRNA expression levels of either sterol 27-hydroxylase or the cholesterol-esterifying enzyme acyl-CoA:cholesterol acyltransferase-1. These results are consistent with the contention that substrate availability, rather than enzyme expression, is the key factor in regulating the production of cholestenoic acid by the lung and that serum cholestenoic acid may be a marker of pulmonary cholesterol homeostasis.
Notes:
 
DOI   
PMID 
Ingemar Björkhem, Steve Meaney (2004)  Brain cholesterol: long secret life behind a barrier.   Arterioscler Thromb Vasc Biol 24: 5. 806-815 May  
Abstract: Although an immense knowledge has accumulated concerning regulation of cholesterol homeostasis in the body, this does not include the brain, where details are just emerging. Approximately 25% of the total amount of the cholesterol present in humans is localized to this organ, most of it present in myelin. Almost all brain cholesterol is a product of local synthesis, with the blood-brain barrier efficiently protecting it from exchange with lipoprotein cholesterol in the circulation. Thus, there is a highly efficient apolipoprotein-dependent recycling of cholesterol in the brain, with minimal losses to the circulation. Under steady-state conditions, most of the de novo synthesis of cholesterol in the brain appears to be balanced by excretion of the cytochrome P-450-generated oxysterol 24S-hydroxycholesterol. This oxysterol is capable of escaping the recycling mechanism and traversing the blood-brain barrier. Cholesterol levels and cholesterol turnover are affected in neurodegenerating disorders, and the capacity for cholesterol transport and recycling in the brain seems to be of importance for the development of such diseases. The possibility has been discussed that administration of inhibitors of cholesterol synthesis may reduce the prevalence of Alzheimer disease. No firm conclusions can, however, be drawn from the studies presented thus far. In the present review, the most recent advances in our understanding of cholesterol turnover in the brain is discussed.
Notes:
2003
 
DOI   
PMID 
Valerio Leoni, Thomas Masterman, Pria Patel, Steve Meaney, Ulf Diczfalusy, Ingemar Björkhem (2003)  Side chain oxidized oxysterols in cerebrospinal fluid and the integrity of blood-brain and blood-cerebrospinal fluid barriers.   J Lipid Res 44: 4. 793-799 Apr  
Abstract: The side chain oxidized oxysterol 24S-hydroxycholesterol (24-OH-chol) is formed almost exclusively in the brain, and there is a continuous passage of this oxysterol through the circulation to the liver. 27-Hydroxycholesterol (27-OH-chol) is produced in most organs and is also taken up by the liver. The 27-OH-chol-24-OH-chol ratio is about 0.1 in the brain and about 2 in the circulation. This ratio was found to be about 0.4 in cerebrospinal fluid (CSF) of asymptomatic patients, consistent with a major contribution from the circulation in the case of 27-OH-chol. In accordance with this, we demonstrated a significant flux of deuterium labeled 27-OH-chol from plasma to the CSF in a healthy volunteer. Patients with a defective blood-brain barrier were found to have markedly increased absolute levels (up to 10-fold) of both 27-OH-chol and 24-OH-chol in CSF, with a ratio between the two sterols reaching up to 2. There was a significant positive correlation between the levels of both oxysterols in CSF and the albuminCSF-albuminplasma ratio. The 27-OH-cholCSF-24-OH-cholCSF ratio was found to be about normal in patients with active multiple sclerosis and significantly increased in patients with meningitis, polyneuropathy, or hemorrhages. Results are discussed in relation to the possible use of 24-OH-cholCSF as a surrogate marker of central nervous system demyelination and/or neuronal death.
Notes:
 
PMID 
Steve Meaney, Amir Babiker, Dieter Lütjohann, Ulf Diczfalusy, Magnus Axelson, Ingemar Björkhem (2003)  On the origin of the cholestenoic acids in human circulation.   Steroids 68: 7-8. 595-601 Sep  
Abstract: 3 Beta-hydroxy-5-cholestenoic acid, 3 beta,7 alpha-dihydroxy-5-cholestenoic acid, and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid are metabolites of cholesterol present at significant concentrations (40-80 ng/ml) in human circulation. The 7 alpha-hydroxylated acids may be formed from cholesterol via two major pathways initiated by oxidations at either the 7 alpha- or 27-positions. In an attempt to clarify the origin and possible precursor-product relationships between these cholestenoic acids, we measured their deuterium enrichment in a unique experiment, after infusion of 10 g of [2H(6)]-cholesterol to a healthy volunteer. The observed extent and time-course of deuterium enrichment of circulating 3 beta-hydroxy-5-cholestenoic and 3 beta,7 alpha-dihydroxy-5-cholestenoic acid were almost identical, while different from that of cholesterol and 7 alpha-hydroxycholesterol. Notably, the deuterium enrichment of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid was similar to that of 7 alpha-hydroxycholesterol (and its metabolite 7 alpha-hydroxy-4-cholesten-3-one), though distinct from the other cholestenoic acids. Finally, the enrichment of unesterified 27-hydroxycholesterol followed a similar, though less pronounced, time curve to the delta(5)-cholestenoic acids. In conclusion, these results suggest that plasma 3 beta-hydroxy-5-cholestenoic acid is formed from a pool of cholesterol distinct from that used for the formation of the bulk of 27-hydroxycholesterol. The results are also in accordance with a formation of 3 beta,7 alpha-dihydroxy-5-cholestenoic acid directly from 3 beta-hydroxy-5-cholestenoic acid, and a formation of most of the circulating 7 alpha-hydroxy-4-cholesten-3-one from 7 alpha-hydroxycholesterol. These results are consistent with a flux of 7 alpha-hydroxycholesterol from the liver into the circulation, and an extrahepatic metabolism of this steroid into 7 alpha-hydroxy-3-oxo-4-cholestenoic acid.
Notes:
2002
 
PMID 
Steve Meaney, Karl Bodin, Ulf Diczfalusy, Ingemar Björkhem (2002)  On the rate of translocation in vitro and kinetics in vivo of the major oxysterols in human circulation: critical importance of the position of the oxygen function.   J Lipid Res 43: 12. 2130-2135 Dec  
Abstract: Oxysterols possess powerful biological activities. Some of their effects on the regulation of key enzymes are similar to those of cholesterol, but are much more potent. One of the critical properties of oxysterols is their ability to pass lipophilic membranes at a high rate. Transfer of unesterified 25-hydroxycholesterol from red blood cells to plasma has been reported to occur more than 1,000 times faster than cholesterol. Here we have measured the relative rate of such translocation of the three major oxysterols in human circulation: 27-hydroxycholesterol, 24S-hydroxycholesterol, and 4beta-hydroxycholesterol. The distance from the 3beta-hydroxyl group to the additional hydroxyl group is the greatest possible in 27-hydroxycholesterol and the least possible in 4beta-hydroxycholesterol. The rate of exchange between erythrocytes and plasma was found to be high for 27-hydroxycholesterol and 24S-hydroxycholesterol, and hardly possible to measure for 4beta-hydroxycholesterol and cholesterol. When injected intravenously into humans, deuterium labeled 24- and 27-hydroxycholesterol caused an immediate high enrichment of the corresponding plasma sterols followed by a decay. After injection of labeled 4beta-hydroxycholesterol, the maximum deuterium enrichment occurred after 2-3 h, when secretion of the oxysterol from the liver is likely to be the limiting factor. When radiolabeled cholesterol was injected under the same conditions, maximum appearance of label occurred after about 2 days. The results illustrate the importance of the position of the additional oxygen in oxysterols and are discussed in relation to the rate of metabolism and biological effects of these oxysterols.
Notes:
 
PMID 
Ingemar Björkhem, Steve Meaney, Ulf Diczfalusy (2002)  Oxysterols in human circulation: which role do they have?   Curr Opin Lipidol 13: 3. 247-253 Jun  
Abstract: Oxysterols are oxygenated derivatives of cholesterol that are intermediates in cholesterol excretion pathways. They may also be regarded as transport forms of cholesterol and introduction of an additional hydroxyl group facilitates flux of cholesterol across cell membranes and the blood-brain barrier. According to current concepts, oxysterols are also mediating a number of cholesterol-induced metabolic effects. The recent discovery of nuclear receptors with an affinity for oxysterols has given support to this concept. Nuclear receptors such as liver X receptor alpha do have a role in cholesterol homeostasis, but there is still only indirect evidence that oxysterols are the physiological ligands. In this overview we report some recent advancements in our knowledge about the origin and metabolic fate of the quantitatively most important oxysterols occurring in the circulation. In addition, we discuss the possibility that some of these oxysterols may activate liver X receptors and regulate cholesterol homeostasis.
Notes:
2001
 
PMID 
S Meaney, M Hassan, A Sakinis, D Lütjohann, K von Bergmann, A Wennmalm, U Diczfalusy, I Björkhem (2001)  Evidence that the major oxysterols in human circulation originate from distinct pools of cholesterol: a stable isotope study.   J Lipid Res 42: 1. 70-78 Jan  
Abstract: The major oxysterols in human circulation are 7 alpha-, 27-, and (24S)-hydroxycholesterol. Two unique experiments were performed to elucidate their origin and kinetics. A volunteer was exposed to (18)O(2)-enriched air. A rapid incorporation of (18)O in both 7 alpha- and 27-hydroxycholesterol and disappearance of label after exposure were observed. The half-life was estimated to be less than 1 h. Incorporation of (18)O in (24S)-hydroxycholesterol was not significant. In the second experiment a volunteer was infused with liposomes containing 10 g of [(2)H(6)]cholesterol. This resulted in an enrichment of plasma cholesterol with (2)H of up to 13%, and less than 0.5% in cerebrospinal fluid cholesterol. The content of (2)H in circulating 7 alpha-hydroxycholesterol remained approximately equal to that of plasma cholesterol and decreased with a half-life of about 13 days. The (2)H content of circulating 27-hydroxycholesterol was initially lower than that of cholesterol but in the last phase of the experiment it exceeded that of cholesterol. No significant incorporation of (2)H in (24S)-hydroxycholesterol was observed.It is evident that 7 alpha-hydroxycholesterol must originate from a rapidly miscible pool, about 80% of 27-hydroxycholesterol from a more slowly exchangeable pool, and more than 90% of (24S)-hydroxycholesterol from a nonexchangeable pool, presumably the brain. The results are discussed in relation to the role of oxysterols in cholesterol homeostasis and their use as markers for pathological conditions. - Meaney, S., M. Hassan, A. Sakinis, D. Lütjohann, K. von Bergmann, A. Wennmalm, U. Diczfalusy, and I. Björkhem. Evidence that the major oxysterols in human circulation originate from distinct pools of cholesterol: a stable isotope study. J. Lipid Res. 2001. 42: 70;-78.
Notes:
2000
 
PMID 
S Meaney, D Lütjohann, U Diczfalusy, I Björkhem (2000)  Formation of oxysterols from different pools of cholesterol as studied by stable isotope technique: cerebral origin of most circulating 24S-hydroxycholesterol in rats, but not in mice.   Biochim Biophys Acta 1486: 2-3. 293-298 Jul  
Abstract: In order to study the origin of different oxysterols in the circulation, in particular 24S-hydroxycholesterol, different pools of cholesterol in rat and mouse were labelled by feeding the animals with a diet supplemented with 0.3 or 0.5% hexadeuterium-labelled cholesterol, respectively, for 10 days. The incorporation of deuterium label in cholesterol and different oxysterols was measured by combined gas chromatography-mass spectrometry in selected tissues and in the circulation. In both rat and mouse, a high incorporation of label was found in cholesterol present in serum and liver (up to 77%). Incorporation of label was similar in 7 alpha- and 7 beta-hydroxycholesterol of the same origin. There was no significant incorporation of deuterium in brain cholesterol, and little or no incorporation in the brain oxysterols investigated, in both animals. In the testis, the incorporation of the deuterium label in cholesterol was less than half of that in the liver, with similarly reduced labelling of the testicular oxysterols. 24S-Hydroxycholesterol in the circulation contained a deuterium content that was about 50% of that of serum and liver cholesterol in the mouse experiment and about 30% in the rat experiment. Thus, about 50% of circulating 24S-hydroxycholesterol in the mouse and about 70% of this fraction in the rat must originate from pools of cholesterol that are not in equilibrium with plasma and liver cholesterol. The liver is probably responsible for a considerable part of the extracerebral formation of 24S-hydroxycholesterol, since this organ contained detectable amounts of 24S-hydroxycholesterol with a relatively high incorporation of deuterium in both animal species. The results are consistent with a cerebral origin of more than half of the 24S-hydroxycholesterol in the circulation of rats, but not in mice.
Notes:
Powered by publicationslist.org.