hosted by
publicationslist.org
    
subhash rakheja

subashrakheja@sympatico.ca

Journal articles

2007
 
DOI   
PMID 
Ren G Dong, Jennie H Dong, John Z Wu, Subhash Rakheja (2007)  Modeling of biodynamic responses distributed at the fingers and the palm of the human hand-arm system.   J Biomech 40: 10. 2335-2340 12  
Abstract: The objective of this study is to develop analytical models for simulating driving-point biodynamic responses distributed at the fingers and palm of the hand under vibration along the forearm direction (z(h)-axis). Two different clamp-like model structures are formulated to analyze the distributed responses at the fingers-handle and palm-handle interfaces, as opposed to the single driving point invariably considered in the reported models. The parameters of the proposed four- and five degrees-of-freedom models are identified through minimization of an rms error function of the model and measured responses under different hand actions, namely, fingers pull, push only, grip only, and combined push and grip. The results show that the responses predicted from both models agree reasonably well with the measured data in terms of distributed as well total impedance magnitude and phase. The variations in the identified model parameters under different hand actions are further discussed in view of the biological system behavior. The proposed models are considered to serve as useful tools for design and assessment of vibration isolation methods, and for developing a hand-arm simulator for vibration analysis of power tools.
Notes:
2005
 
PMID 
Santosh C Mandapuram, Subhash Rakheja, M A Shiping, Richard G Demont, Paul-Emile Boileau (2005)  Influence of back support conditions on the apparent mass of seated occupants under horizontal vibration.   Ind Health 43: 3. 421-435 Jul  
Abstract: The response characteristics of seated human subjects exposed to fore-aft (x-axis) and lateral (y-axis) vibration are investigated through measurements of dynamic interactions between the seated body and the seat pan, and the upper body and the seat backrest. The experiments involved: (i) three different back support conditions (no back support, and upper body supported against a vertical and an inclined backrest); (ii) three different seat pan heights (425, 390 and 350 mm); and three different magnitudes (0.25, 0.5 and 1.0 m/s2 rms acceleration) of band limited random excitations in the 0.5-10 Hz frequency range, applied independently along the fore-aft and lateral directions in an uncoupled manner. The body force responses, measured at the seat pan and the backrest along the direction of motion, are applied to characterize the total body apparent mass (APMS) reflected on the seat pan, and those of the upper body reflected on the backrest. Unlike the widely reported responses of seated occupants under vertical vibration, the responses to horizontal vibration show strong effect of excitation magnitude. The large displacements at lower frequencies cause considerable rotations of the upper body, and the knees and ankles, particularly when seated without a back support, which encouraged the occupants to continually shift larger portion of the body weight towards their feet. This together with the strong dependence on the excitation magnitude resulted in considerable inter-subject variability of the data. The addition of a back support causes stiffening of the body to limit the low frequency rocking motion of the upper body under x-axis motion, while considerable dynamic interactions with the backrest occur. The mean apparent mass (APMS) responses measured at the seat pan and the backrest suggest strong contributions due to the back support condition, and the direction and magnitude of horizontal vibration, while the role of seat height is important only in the vicinity of the resonant frequencies. In the absence of a back support, the seat pan responses predominate at a lower frequency (near 0.7 Hz) under both directions of motion, while two secondary peaks in the magnitude also occur at relatively higher frequencies. The addition of back support causes the seat pan response to converge mostly to a single primary peak, resulting in a single-degree-of-freedom like behavior, with peak occurring in the 2.7-5.4 Hz range under x-axis, and 0.9-2.1 Hz range under y-axis motions, depending upon the excitation magnitude and the back support condition. This can be attributed to the stiffening of the body in the presence of the constraints imposed by the backrest. A relaxed posture with an inclined backrest, however, causes a softening effect, when compared to an erect posture with a vertical backrest. The backrest, however, serves as another source of vibration to the seated occupant, which tends to cause considerably higher magnitude responses. The considerable magnitudes of the apparent mass response measured at the seat back under fore-aft motions suggest strong interactions with the backrest. Such interactions along the side-to-side motions, however, are relatively small. The results suggest that the biodynamic characterization of seated occupants exposed to horizontal vibration requires appropriate considerations of the interactions with the backrest.
Notes:
 
PMID 
Yasser Aldien, Pierre Marcotte, Subhash Rakheja, Paul-Emile Boileau (2005)  Mechanical impedance and absorbed power of hand-arm under x(h)-axis vibration and role of hand forces and posture.   Ind Health 43: 3. 495-508 Jul  
Abstract: The biodynamic responses of the hand-arm system under x(h)-axis vibration are investigated in terms of the driving point mechanical impedance (DPMI) and absorbed power in a laboratory study. For this purpose, seven healthy male subjects are exposed to two levels of random vibration in the 8-1,000 Hz frequency range, using three instrumented cylindrical handles of different diameters (30, 40 and 50 mm), and different combinations of grip (10, 30 and 50 N) and push (0, 25 and 50 N) forces. The experiments involve grasping the handle while adopting two different postures, involving elbow flexion of 90 degrees and 180 degrees, with wrist in the neutral position for both postures. The analyses of the results revealed peak DPMI magnitude and absorbed power responses near 25 Hz and 150 Hz, for majority of the test conditions considered. The frequency corresponding to the peak response increased with increasing hand forces. Unlike the absorbed power, the DPMI response was mostly observed to be insensitive to variations in the excitation magnitude. The handle diameter revealed obvious effects on the DPMI magnitude, specifically at frequencies above 250 Hz, which was not evident in the absorbed power due to relatively low velocity at higher frequencies. The influence of hand forces was also evident on the DPMI magnitude response particularly at frequencies. above 100 Hz, while the effect of hand-arm posture on the DPMI magnitude was nearly negligible. The magnitude of power absorbed within the hand and arm was observed to be strongly dependent upon the excitation level over the entire frequency range, while the influence of hand-arm posture on the total absorbed power was observed to be important. The effect of variations in the hand forces on the absorbed power was relatively small for the bent elbow posture, while an increase in either the grip or the push force coupled with the extended arm posture resulted in considerably higher energy absorption. The results suggested that the handle size, hand-arm posture and hand forces, produce coupled effect on the biodynamic response of the hand-arm system.
Notes:
2004
 
DOI   
PMID 
J Z Wu, R G Dong, S Rakheja, A W Schopper, W P Smutz (2004)  A structural fingertip model for simulating of the biomechanics of tactile sensation.   Med Eng Phys 26: 2. 165-175 Mar  
Abstract: Tactile performance of human fingertips is associated with activity of the nerve endings and sensitivity of the soft tissue within the fingertip to the static and dynamic skin indentation. The nerve endings in the fingertips sense the stress/strain states developed within the soft tissue, which are affected by the material properties of the tissues. The vibrotactile sensation and tactile performance are thus believed to be strongly influenced by the nonlinear and time-dependent properties of the soft tissues. The purpose of the present research is to simulate the biomechanics of tactile sensation. A two-dimensional model, which incorporates the essential anatomical structures of a finger (i.e. skin, subcutaneous tissue, bone, and nail), has been used for the analysis. The skin tissue is assumed to be hyperelastic and viscoelastic. The subcutaneous tissue is considered to be a nonlinear, biphasic material composed of a hyperelastic solid and an inviscid fluid phase. The nail and bone are considered to be linearly elastic. The advantages of the proposed fingertip model over the previous "waterbed" and "continuum" fingertip models include its ability to predict the deflection profile of the fingertip surface, the stress and strain distributions within the soft tissue, and most importantly, the dynamic response of the fingertip to mechanical stimuli. The proposed model is applied to simulate the mechanical responses of a fingertip under a line load, and in one-point (1PT) and two-point (2PT) tactile discrimination tests. The model's predictions of the deflection profiles of a fingertip surface under a line load agree well with the reported experimental data. Assuming that the mechanoreceptors in the dermis sense the stimuli associated with normal strains (the vertical and horizontal strains) and strain energy density, our numerical results suggest that the threshold of 2PT discrimination may lie between 2.0 and 3.0 mm, which is consistent with the published experimental data. The present study represents an effort to develop a structural model of the fingertip that incorporates its anatomical structure, and the nonlinear and time-dependent properties of the soft tissues.
Notes:
 
DOI   
PMID 
R G Dong, A W Schopper, T W McDowell, D E Welcome, J Z Wu, W P Smutz, C Warren, S Rakheja (2004)  Vibration energy absorption (VEA) in human fingers-hand-arm system.   Med Eng Phys 26: 6. 483-492 Jul  
Abstract: A methodology for measuring the vibration energy absorbed into the fingers and the palm exposed to vibration is proposed to study the distribution of the vibration energy absorption (VEA) in the fingers-hand-arm system and to explore its potential association with vibration-induced white finger (VWF). The study involved 12 adult male subjects, constant-velocity sinusoidal excitations at 10 different discrete frequencies in the range of 16-1000 Hz, and four different hand-handle coupling conditions (finger pull-only, hand grip-only, palm push-only, and combined grip and push). The results of the study suggest that the VEA into the fingers is considerably less than that into the palm at low frequencies (< or = 25 Hz). They are, however, comparable under the excitations in the 250-1000 Hz frequency range. The finger VEA at high frequencies (> or = 100 Hz) is practically independent of the hand-handle coupling condition. The coupling conditions affect the VEA into the fingers and the palm very differently. The finger VEA results suggest that the ISO standardized frequency weighting (ISO 5349-1, 2001) may underestimate the effect of high frequency vibration on vibration-induced finger disorders. The proposed method may provide new opportunities to examine VEA and its association with VWF and other types of vibration-induced disorders in the hand-arm system.
Notes:
2003
 
PMID 
J Z Wu, R G Dong, W P Smutz, S Rakheja (2003)  Dynamic interaction between a fingerpad and a flat surface: experiments and analysis.   Med Eng Phys 25: 5. 397-406 Jun  
Abstract: Many neural and vascular diseases in hands and fingers have been related to the degenerative responses of local neural and vascular systems in fingers to excessive dynamic loading. Since fingerpads serve as a coupling element between the hand and the objects, the investigation of the dynamic coupling between fingertip and subjects could provide important information for the understanding of the pathomechanics of these neural and vascular diseases. In the present study, the nonlinear and time-dependent force responses of fingertips during dynamic contact have been investigated experimentally and theoretically. Four subjects (2 male and 2 female) with an average age of 24 years participated in the study. The index fingers of right and left hands of each subject were compressed using a flat platen via a micro testing machine. A physical model was proposed to simulate the nonlinear and time-dependent force responses of fingertips during dynamic contact. Using a force relaxation test and a fast loading test at constant loading speed, the material/structural parameters underlying the proposed physical model could be identified. The predicted rate-dependent force/displacement curves and time-histories of force responses of fingertips were compared with those measured in the corresponding experiments. Our results suggest that the force responses of fingertips during the dynamic contacts are nonlinear and time-dependent. The physical model was verified to characterize the nonlinear, rate-dependent force-displacement behaviors, force relaxations, and time-histories of force responses of fingertips during dynamic contact.
Notes:
2002
 
PMID 
J Z Wu, R G Dong, S Rakheja, A W Schopper (2002)  Simulation of mechanical responses of fingertip to dynamic loading.   Med Eng Phys 24: 4. 253-264 May  
Abstract: Extended exposure to mechanical vibration has been related to many vascular, sensorineural and musculoskeletal disorders of the hand-arm system, frequently termed 'hand-arm vibration syndrome' (HAVS). A two-dimensional, nonlinear finite element model of a fingertip is developed to study the stress and strain fields of the soft tissue under dynamic loading, that may be encountered while grasping and operating a hand-held power tool. The model incorporates the most essential anatomical elements of a fingertip, such as soft tissue, bone, and nail. The finger is assumed to be in contact with a steel plate, simulating the interaction between the fingertip and a vibrating machine tool or handle. The soft tissue is assumed to be nonlinearly visco-elastic, while the nail, bone, and steel plate are considered to be linearly elastic. In order to study the time-dependent deformation behavior of the fingertip, the numerical simulations were performed under ramp-like loading with different ramping periods and sinusoidal vibrations of the contacting plate at three different frequencies (1, 10, and 31.5 Hz). Owing to relatively large deformations of the soft tissue under specified static and dynamic loading, Lagrangian large deformation theory was applied in the present analysis. The effects of the loading rate and the frequency of the sinusoidal vibration on the time-dependent strain/stress distributions in the different depth within the soft tissue of the fingertip are investigated numerically. Our simulations suggest that the soft tissue of the fingertip experiences high local stress and strain under dynamic loading and the fingertip may separate from the vibrating contact surface due to the viscous deformation behaviour of the soft tissue. For a given deformation, the high frequency loading produces a higher stress in the tissues compared to that obtained at a low frequency loading. The present model may serve as a useful tool to study the mechanism of tissue degeneration under vibratory loading encountered during operation of hand-held power tools.
Notes:
2001
 
PMID 
R G Dong, S Rakheja, A W Schopper, B Han, W P Smutz (2001)  Hand-transmitted vibration and biodynamic response of the human hand-arm: a critical review.   Crit Rev Biomed Eng 29: 4. 393-439  
Abstract: Hand-arm vibration syndrome (HAVS) has been associated with prolonged exposure to vibration transmitted to the human hand-arm system from hand-held power tools, vibrating machines, or hand-held vibrating workpieces. The biodynamic response of the human hand and arm to hand transmitted vibration (HTV) forms an essential basis for effective evaluations of exposures, vibration-attenuation mechanisms, and potential injury mechanisms. The biodynamic response to HTV and its relationship to HAVS are critically reviewed and discussed to highlight the advances and the need for further research. In view of its strong dependence on the nature of HTV and the lack of general agreement on the characteristics of HTV, the reported studies are first reviewed to enhance an understanding of HTV and related issues. The characteristics of HTV and relevant unresolved issues are discussed on the basis of measured data, proposed standards, and measurement methods, while the need for further developments in measurement systems is emphasized. The studies on biodynamic response and their findings are grouped into four categories based on the methodology used and the objective. These include studies on (1) through-the-hand-arm response, expressed in terms of vibration transmissibility; (2) to-the-hand response, expressed in terms of the force-motion relationship of the hand-arm system; (3) to-the-hand biodynamic response function, expressed in terms of vibration energy absorption; and (4) computer modeling of the biodynamic response characteristics.
Notes:
1996
 
PMID 
R Gurram, S Rakheja, P E Boileau, G J Gouw (1996)  Development of a grip force dependent hand-arm vibration model.   Cent Eur J Public Health 4: 1. 65-68 Feb  
Abstract: The driving-point mechanical impedance of the human hand-arm system is strongly dependent on the grip force and excitation frequency. In this study, the biodynamic response of the human hand-arm is characterized by three and four degree-of-freedom (DOF) linear and nonlinear mass excited model incorporating grip force dependence of the restoring and dissipative properties. The model parameters are identified by minimizing a constrained objective function compromising impedence magnitude and phase errors between the computed and measured target driving-point mechanical impedance characteristics. The target impedance values are established in the 10 to 1000 Hz frequency range from the measurements performed in the three orthogonal directions (Xh, Yh and Zh) using 2 x g peak acceleration sinusoidal excitation and different magnitudes of constant grip force ranging from 10 to 50 N. The linear and nonlinear models are analyzed to determine the driving-point mechanical impedance characteristics for different levels of grip force. The computed response characteristics are compared to the target values to demonstrate the validity of the proposed models. The results of the study revealed that the four-DOF nonlinear grip force dependent model yields good correlation with the measured response in all three directions, for the range of grip forces considered.
Notes:
1995
 
PMID 
R Gurram, S Rakheja, G J Gouw (1995)  A study of hand grip pressure distribution and EMG of finger flexor muscles under dynamic loads.   Ergonomics 38: 4. 684-699 Apr  
Abstract: A matrix of miniature and flexible pressure sensors is proposed to measure the grip pressure distribution (GPD) at the hand-handle interface of a vibrating handle. The GPD was acquired under static and dynamic loads for various levels of grip forces and magnitudes of vibration at different discrete frequencies in the 20-1000 Hz range. The EMG of finger flexor muscles was acquired using the silver-silver chloride surface electrodes under different static and dynamic loads. The measured data was analysed to study the influence of grip force, and magnitude and frequency characteristics of handle vibration on: (i) the local concentration of forces at the hand-handle interface; and (ii) the electrical activity of the finger flexor muscles. The results of the study revealed high interface pressure near the tips of index and middle fingers, and base of the thumb under static grip conditions. This concentration of high pressure shifted towards the middle of the fingers under dynamic loads, irrespective of the grip force, excitation frequency, and acceleration levels. The electrical activity of the finger flexor muscles increased considerably with the grip force under static as well as dynamic loads. The electrical activity under dynamic loads was observed to be 1.5-6.0 times higher than that under the static loads.
Notes:
 
PMID 
R Gurram, S Rakheja, G J Gouw, S Ma (1995)  Influence of power tool-related parameters on the response of finger flexor muscles.   Int Arch Occup Environ Health 66: 6. 393-398  
Abstract: Surface electromyography (EMG) and statistical analysis techniques were applied to investigate the response of finger flexor muscles to hand-transmitted vibration in all the three orthogonal directions. The trends in measured data were examined to derive the influence of variations in the tool-related parameters. Single-factor and multi-factor statistical analyses were performed to establish the significance of influence of different individual and coupled power tool-related parameters. The analysis of variance (ANOVA) results indicated that the vibration direction, acceleration and grip force influence the EMG of finger flexor muscles in a significant manner (P < 0.001), while the effect of vibration frequency was observed to be insignificant (P > 0.9). The electrical activity measured under different vibratory test conditions was observed to be 1.5-6.0 times higher than that measured under the static loads. The increase in electrical activity of the finger flexor muscles with an increase in the grip force was observed to be most significant under static as well as dynamic loading conditions.
Notes:
1993
 
PMID 
S Rakheja, R Gurram, G J Gouw (1993)  Development of linear and nonlinear hand-arm vibration models using optimization and linearization techniques.   J Biomech 26: 10. 1253-1260 Oct  
Abstract: Hand-arm vibration (HAV) models serve as an effective tool to assess the vibration characteristics of the hand-tool system and to evaluate the attenuation performance of vibration isolation mechanisms. This paper describes a methodology to identify the parameters of HAV models, whether linear or nonlinear, using mechanical impedance data and a nonlinear programming based optimization technique. Three- and four-degrees-of-freedom (DOF) linear, piecewise linear and nonlinear HAV models are formulated and analyzed to yield impedance characteristics in the 5-1000 Hz frequency range. A local equivalent linearization algorithm, based upon the principle of energy similarity, is implemented to simulate the nonlinear HAV models. Optimization methods are employed to identify the model parameters, such that the magnitude and phase errors between the computed and measured impedance characteristics are minimum in the entire frequency range. The effectiveness of the proposed method is demonstrated through derivations of models that correlate with the measured X-axis impedance characteristics of the hand-arm system, proposed by ISO. The results of the study show that a linear model cannot predict the impedance characteristics in the entire frequency range, while a piecewise linear model yields an accurate estimation.
Notes:
Powered by publicationslist.org.