hosted by
publicationslist.org
    
Takuya Shirakihara

tshiraki@ncc.go.jp

Journal articles

2009
 
DOI   
PMID 
Masao Saitoh, Takuya Shirakihara, Kohei Miyazono (2009)  Regulation of the stability of cell surface E-cadherin by the proteasome.   Biochem Biophys Res Commun 381: 4. 560-565 Apr  
Abstract: The epithelial-mesenchymal transition (EMT), a crucial event in cancer progression and embryonic development, is induced by transforming growth factor (TGF)-beta. Expression of E-cadherin, a representative epithelial marker, is repressed through transcriptional reduction by TGF-beta. Here, we show that endocytosis of cell surface E-cadherin during EMT induced by TGF-beta and during scattering induced by hepatocyte growth factor (HGF) can be blocked by inhibiting proteasome with lactacystin and MG132 in normal epithelial cells and in cancer cells. Although loss of cell surface E-cadherin following TGF-beta treatment induced translocation of beta-catenin, an E-cadherin-anchoring molecule, to the nucleus, proteasome inhibition prevented this process and resulted in co-localization of beta-catenin with E-cadherin at the cell surface, leading to establishment of cell-cell adhesion. However, promotion of cell migration by TGF-beta was not significantly affected by proteasome inhibition. Proteasome-dependent events thus appear to be involved in stabilization of cell surface E-cadherin.
Notes:
 
DOI   
PMID 
Kana Horiguchi, Takuya Shirakihara, Ayako Nakano, Takeshi Imamura, Kohei Miyazono, Masao Saitoh (2009)  Role of Ras signaling in the induction of snail by transforming growth factor-beta.   J Biol Chem 284: 1. 245-253 Jan  
Abstract: The epithelial-mesenchymal transition (EMT) is a crucial morphological event that occurs during the progression of epithelial tumors. EMT can be induced by transforming growth factor (TGF)-beta in some tumor cells. Here, we demonstrate the molecular mechanism whereby Snail, a key regulator of EMT, is induced by TGF-beta in tumor cells. Snail induction by TGF-beta was highly dependent on cooperation with active Ras signals, and silencing of Ras abolished Snail induction by TGF-beta in pancreatic cancer Panc-1 cells. Transfection of constitutively active Ras into HeLa cells led to induction of Snail by TGF-beta, while representative direct targets of TGF-beta, including Smad7 and PAI-1, were not affected by Ras signaling. Using mitogen-activated protein kinase inhibitors or Smad3 or Smad2 mutants, we found that phosphorylation at the linker region of Smad2/3 was not required for the induction of Snail by TGF-beta. Taken together, these findings indicate that Ras and TGF-beta-Smad signaling selectively cooperate in the induction of Snail, which occurs in a Smad-dependent manner, but independently of phosphorylation at the linker region of R-Smads by Ras signaling.
Notes:
2007
 
DOI   
PMID 
Takuya Shirakihara, Masao Saitoh, Kohei Miyazono (2007)  Differential regulation of epithelial and mesenchymal markers by deltaEF1 proteins in epithelial mesenchymal transition induced by TGF-beta.   Mol Biol Cell 18: 9. 3533-3544 Sep  
Abstract: Epithelial-mesenchymal transition (EMT), a crucial event in cancer progression and embryonic development, is induced by transforming growth factor (TGF)-beta in mouse mammary NMuMG epithelial cells. Id proteins have previously been reported to inhibit major features of TGF-beta-induced EMT. In this study, we show that expression of the deltaEF1 family proteins, deltaEF1 (ZEB1) and SIP1, is gradually increased by TGF-beta with expression profiles reciprocal to that of E-cadherin. SIP1 and deltaEF1 each dramatically down-regulated the transcription of E-cadherin in NMuMG cells through direct binding to the E-cadherin promoter. Silencing of the expression of both SIP1 and deltaEF1, but not either alone, completely abolished TGF-beta-induced E-cadherin repression. However, expression of mesenchymal markers, including fibronectin, N-cadherin, and vimentin, was not affected by knockdown of SIP1 and deltaEF1. TGF-beta-induced the expression of Ets1, which in turn activated deltaEF1 promoter activity. Moreover, up-regulation of SIP1 and deltaEF1 expression by TGF-beta was suppressed by knockdown of Ets1 expression. In addition, Id2 suppressed the TGF-beta- and Ets1-induced up-regulation of deltaEF1. Taken together, these findings suggest that the deltaEF1 family proteins, SIP1 and deltaEF1, are necessary, but not sufficient, for TGF-beta-induced EMT and that Ets1 induced by TGF-beta may function as an upstream transcriptional regulator of SIP1 and deltaEF1.
Notes:
2004
 
DOI   
PMID 
M Kondo, E Cubillo, K Tobiume, T Shirakihara, N Fukuda, H Suzuki, K Shimizu, K Takehara, A Cano, M Saitoh, K Miyazono (2004)  A role for Id in the regulation of TGF-beta-induced epithelial-mesenchymal transdifferentiation.   Cell Death Differ 11: 10. 1092-1101 Oct  
Abstract: Epithelial-mesenchymal transdifferentiation (EMT) is a critical morphogenic event that occurs during embryonic development and during the progression of various epithelial tumors. EMT can be induced by transforming growth factor (TGF)-beta in mouse NMuMG mammary epithelial cells. Here, we demonstrate a central role of helix-loop-helix factors, E2A and inhibitor of differentiation (Id) proteins, in TGF-beta-induced EMT. Epithelial cells ectopically expressing E2A adopt a fibroblastic phenotype and acquire migratory/invasive properties, concomitant with the suppression of E-cadherin expression. Id proteins interacted with E2A proteins and antagonized E2A-dependent suppression of the E-cadherin promoter. Levels of Id proteins were dramatically decreased by TGF-beta. Moreover, NMuMG cells overexpressed Id2 showed partial resistance to TGF-beta-induced EMT. Id proteins thus inhibit the action of E2A proteins on the expression of E-cadherin, but after TGF-beta stimulation, E2A proteins are present in molar excess of the Id proteins, thus over-riding their inhibitory function and leading to EMT.
Notes:
Powered by publicationslist.org.