hosted by
publicationslist.org
    

Teiichi Furuichi


tfuruichi@brain.riken.jp

Journal articles

2010
Tetsushi Sadakata, Teiichi Furuichi (2010)  Ca(2+)-dependent activator protein for secretion 2 and autistic-like phenotypes.   Neurosci Res 67: 3. 197-202 Jul  
Abstract: Ca(2+)-dependent activator protein for secretion 2 (CAPS2 or CADPS2) regulates dense-core vesicle (DCV) exocytosis. We found that CAPS2 is involved in the secretion of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) and that CAPS2 KO mice not only have deficits in neuronal development and survival but also exhibit abnormal behaviors, including impaired social interaction, hyperactivity, an abnormal sleep-wake rhythm and increased anxiety in unfamiliar environments. Moreover, we identified increased expression of a rare CAPS2 splice variant in autism patients that specifically lacks exon 3 and that is not transported to axons when exogenously expressed in mouse cortical neurons. Moreover, non-synonymous SNPs have been identified in some autistic patients. These results implicate CAPS2 in autism susceptibility. Therefore, CAPS2 KO mice will be a useful animal model to study the aspects of the neuropathology and behavior characteristics of neurodevelopmental disorders.
Notes:
Daisuke Furutama, Noriyuki Morita, Riya Takano, Yukiko Sekine, Tetsushi Sadakata, Yo Shinoda, Kanehiro Hayashi, Yuriko Mishima, Katsuhiko Mikoshiba, Richard Hawkes, Teiichi Furuichi (2010)  Expression of the IP3R1 promoter-driven nls-lacZ transgene in Purkinje cell parasagittal arrays of developing mouse cerebellum.   J Neurosci Res 88: 13. 2810-2825 Oct  
Abstract: The cerebellar Purkinje cell monolayer is organized into heterogeneous Purkinje cell compartments that have different molecular compositions. Here we describe a transgenic mouse line, 1NM13, that shows heterogeneous transgene expression in parasagittal Purkinje cell arrays. The transgene consists of a nuclear localization signal (nls) fused to the beta-galactosidase (lacZ) composite gene driven by the type 1 inositol 1,4,5-trisphosphate receptor (IP(3)R1) gene promoter. IP(3)R1-nls-lacZ transgene expression was detected at a single Purkinje cell level over the surface of a whole-mount X-gal-stained cerebellum because of nuclear accumulation of the nls-lacZ activity. Developing cerebella of 1NM13 mice showed stripe-like X-gal staining patterns of parasagittal Purkinje cell subsets. The X-gal stripe pattern was likely determined by an intrinsic property as early as E15 and showed increasing complexity with cerebellar development. The X-gal stripe pattern was reminiscent of, but not identical to, the stripe pattern of zebrin II immunoreactivity. We designated the symmetrical X-gal-positive (transgene-positive, Tg(+)) Purkinje cell stripes about the midline as vermal Tg1(+), Tg2(a, b)(+) and Tg3(a, b)(+) stripes and hemispheric Tg4(a, b)(+), Tg5(a, b)(+), Tg6(a, b, c)(+), and Tg7(a, b)(+) stripes, where a, b, and c indicate substripes. We also assigned three parafloccular substripes Tg8(a, b, c)(+). The boundaries of X-gal stripes at P5 were consistent with raphes in the Purkinje cell layer through which granule cells migrate, suggesting a possible association of the X-gal stripes with raphe formation. Our results indicate that 1NM13 is a good mouse model with a reproducible and clear marker for the compartmentalization of Purkinje cell arrays.
Notes:
2009
Yoko Shiraishi-Yamaguchi, Yumi Sato, Rieko Sakai, Akihiro Mizutani, Thomas Knöpfel, Nozomu Mori, Katsuhiko Mikoshiba, Teiichi Furuichi (2009)  Interaction of Cupidin/Homer2 with two actin cytoskeletal regulators, Cdc42 small GTPase and Drebrin, in dendritic spines.   BMC Neurosci 10: 03  
Abstract: BACKGROUND: Homer is a postsynaptic scaffold protein that links various synaptic signaling proteins, including the type I metabotropic glutamate receptor subunits 1alpha and 5, the inositol 1,4,5-trisphosphate receptor, Shank and Cdc42 small GTPase. Overexpression of Homer induces changes in dendritic spine morphology in cultured hippocampal neurons. However, the molecular basis underpinning Homer-mediated spine morphogenesis remains unclear. In this study, we aimed to elucidate the structural and functional properties of the interaction between Cupidin/Homer2 and two actin-cytoskeletal regulators, Cdc42 small GTPase and Drebrin. RESULTS: Cupidin/Homer2 interacted with activated Cdc42 small GTPase via the Cdc42-binding domain that resides around amino acid residues 191-283, within the C-terminal coiled-coil domain. We generated a Cupidin deletion mutant lacking amino acids 191-230 (CPDDelta191-230), which showed decrease Cdc42-binding ability but maintained self-multimerization ability. Cupidin suppressed Cdc42-induced filopodia-like protrusion formation in HeLa cells, whereas CPDDelta191-230 failed to do so. In cultured hippocampal neurons, Cupidin was targeted to dendritic spines, whereas CPDDelta191-230 was distributed in dendritic shafts as well as spines. Overexpression of CPDDelta191-230 decreased the number of synapses and reduced the amplitudes of miniature excitatory postsynaptic currents in hippocampal neurons. Cupidin interacted with a dendritic spine F-actin-binding protein, Drebrin, which possesses two Homer ligand motifs, via the N-terminal EVH-1 domain. CPDDelta191-230 overexpression decreased Drebrin clustering in the dendritic spines of hippocampal neurons. CONCLUSION: These results indicate that Cupidin/Homer2 interacts with the dendritic spine actin regulators Cdc42 and Drebrin via its C-terminal and N-terminal domains, respectively, and that it may be involved in spine morphology and synaptic properties.
Notes:
Kenji Amano, Morimitsu Fujii, Satoru Arata, Takuro Tojima, Masaharu Ogawa, Noriyuki Morita, Atsushi Shimohata, Teiichi Furuichi, Shigeyoshi Itohara, Hiroyuki Kamiguchi, Julie R Korenberg, Akiko Arata, Kazuhiro Yamakawa (2009)  DSCAM deficiency causes loss of pre-inspiratory neuron synchroneity and perinatal death.   J Neurosci 29: 9. 2984-2996 Mar  
Abstract: Down syndrome cell adhesion molecule (DSCAM) is a neural adhesion molecule that plays diverse roles in neural development. We disrupted the Dscam locus in mice and found that the null mutants (Dscam(-/-)) died within 24 h after birth. Whole-body plethysmography showed irregular respiration and lower ventilatory response to hypercapnia in the null mutants. Furthermore, a medulla-spinal cord preparation of Dscam(-/-) mice showed that the C4 ventral root activity, which drives diaphragm contraction for inspiration, had an irregular rhythm with frequent apneas. Optical imaging of the preparation using voltage-sensitive dye revealed that the pre-inspiratory neurons located in the rostral ventrolateral medulla and belonging to the rhythm generator for respiration, lost their synchroneity in Dscam(-/-) mice. Dscam(+/-) mice, which survived to adulthood without any overt abnormalities, also showed irregular respiration but milder than Dscam(-/-) mice. These results suggest that DSCAM plays a critical role in central respiratory regulation in a dosage-dependent manner.
Notes:
Tetsushi Sadakata, Teiichi Furuichi (2009)  Developmentally regulated Ca2+-dependent activator protein for secretion 2 (CAPS2) is involved in BDNF secretion and is associated with autism susceptibility.   Cerebellum 8: 3. 312-322 Sep  
Abstract: The postnatal development of the cerebellum is accomplished via a series of cytogenetic and morphogenetic events encoded in the genome. To decipher the underlying genetic basis of these events we have systematized the spatio-temporal gene expression profiles during mouse cerebellar development in the Cerebellar Development Transcriptome Database (CDT-DB). Using the CDT-DB, Ca(2+)-dependent activator protein for secretion 2 (CAPS2 or CADPS2) was identified as a developmentally regulated gene that is predominantly expressed in cerebellar granule cells (GCs) with an expression peak around the first or second postnatal week. CAPS2 protein is concentrated in parallel fiber (PF) terminals and is associated with secretory vesicles containing brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3). CAPS2 enhances release of BDNF and NT-3, both of which are essential for normal cerebellar development. CAPS2-deficient (CAPS2(-/-)) mice show reduced secretion of BDNF and NT-3; consequently, the cerebella of these mice exhibit developmental deficits, such as delayed development and increased cell death in GCs, fewer branched dendrites on Purkinje cells (PCs), and loss of the intercrural fissure. The PF-PC synapses have aberrant cytoarchitectures and electrophysiological properties. These abnormal cellular and morphological phenotypes are more severe around the cerebellar vermis, in which hypoplasia has been reported in autism patients. Moreover, CAPS2(-/-) mice had fewer cortical and hippocampal parvalbumin-positive interneurons and some autistic-like behavioral phenotypes. In the CAPS2 genes of some autistic patients an aberrant splicing variant and non-synonymous SNPs have been identified. These recent studies implicate CAPS2 in autism susceptibility. Therefore, CAPS2(-/-) mice will be a useful model animal in which to study aspects of the neuropathology and behaviors characteristic of developmental disorders.
Notes:
2008
Toshimitsu Suzuki, Ikuyo Inoue, Tetsushi Yamagata, Noriyuki Morita, Teiichi Furuichi, Kazuhiro Yamakawa (2008)  Sequential expression of Efhc1/myoclonin1 in choroid plexus and ependymal cell cilia.   Biochem Biophys Res Commun 367: 1. 226-233 Feb  
Abstract: EFHC1 is a gene mutated in patients with idiopathic epilepsies, and encodes the myoclonin1 protein. We here report the distribution of myoclonin1 in mouse. Immunohistochemical analyses revealed that the myoclonin1 first appeared at the roof of hindbrain at embryonic day 10 (E10), and moved on to choroid plexus at E14. At E18, it moved to ventricle walls and disappeared from choroid plexus. From neonatal to adult stages, myoclonin1 was concentrated in the cilia of ependymal cells at ventricle walls. At adult stages, myoclonin1 expression was also observed at tracheal epithelial cilia in lung and at sperm flagella in testis. Specificities of these immunohistochemical signals were verified by using Efhc1-deficient mice as negative controls. Results of Efhc1 mRNA in situ hybridization were also consistent with the immunohistochemical observations. Our findings raise "choroid plexusopathy" or "ciliopathy" as intriguing candidate cascades for the molecular pathology of epilepsies caused by the EFHC1 mutations.
Notes:
Akihiro Mizutani, Yukiko Kuroda, Akira Futatsugi, Teiichi Furuichi, Katsuhiko Mikoshiba (2008)  Phosphorylation of Homer3 by calcium/calmodulin-dependent kinase II regulates a coupling state of its target molecules in Purkinje cells.   J Neurosci 28: 20. 5369-5382 May  
Abstract: Homer proteins are components of postsynaptic density (PSD) and play a crucial role in coupling diverse target molecules. However, the regulatory aspect of Homer-mediated coupling has been addressed only about a dominant-negative effect of Homer1a, which requires de novo gene expression. Here, we present evidence that Homer-mediated coupling is regulated by its phosphorylation state. We found that Homer3, the predominant isoform in Purkinje cells, is phosphorylated by calcium/calmodulin-dependent protein kinase II (CaMKII) both in vitro and in vivo. Biochemical fractionation with phosphor-specific antibodies revealed the presence of phosphorylated Homer3 in the cytosolic fraction in contrast to high levels of nonphosphorylated Homer3 in PSD. In P/Q-type voltage-gated-Ca2+ channel knock-out mice, in which CaMKII activation was reduced, the levels of Homer3 phosphorylation and the soluble form of Homer 3 were markedly lower. Furthermore, both robust phosphorylation of Homer3 and its dissociation from metabotropic glutamate receptor 1alpha (mGluR1alpha) were triggered by depolarization in primary cultured Purkinje cells, and these events were inhibited by CaMKII inhibitor. An in vitro binding kinetic analysis revealed that these phosphorylation-dependent events were attributable to a decrease in the affinity of phosphorylated Homer3 for its ligand. In a heterologous system, the Ca2+ signaling pattern induced by mGluR1alpha activation was modulated by the Homer3 phosphorylation state. Together, these findings suggested that Homer3 in Purkinje cells might function as a reversible coupler regulated by CaMKII phosphorylation and that the phosphorylation is capable of regulating the postsynaptic molecular architecture in response to synaptic activity.
Notes:
Fumio Yoshikawa, Yumi Sato, Koujiro Tohyama, Takumi Akagi, Tsutomu Hashikawa, Yuko Nagakura-Takagi, Yukiko Sekine, Noriyuki Morita, Hiroko Baba, Yutaka Suzuki, Sumio Sugano, Akira Sato, Teiichi Furuichi (2008)  Opalin, a transmembrane sialylglycoprotein located in the central nervous system myelin paranodal loop membrane.   J Biol Chem 283: 30. 20830-20840 Jul  
Abstract: In contrast to compact myelin, the series of paranodal loops located in the outermost lateral region of myelin is non-compact; the intracellular space is filled by a continuous channel of cytoplasm, the extracellular surfaces between neighboring loops keep a definite distance, but the loop membranes have junctional specializations. Although the proteins that form compact myelin have been well studied, the protein components of paranodal loop membranes are not fully understood. This report describes the biochemical characterization and expression of Opalin as a novel membrane protein in paranodal loops. Mouse Opalin is composed of a short N-terminal extracellular domain (amino acid residues 1-30), a transmembrane domain (residues 31-53), and a long C-terminal intracellular domain (residues 54-143). Opalin is enriched in myelin of the central nervous system, but not that of the peripheral nervous system of mice. Enzymatic deglycosylation showed that myelin Opalin contained N- and O-glycans, and that the O-glycans, at least, had negatively charged sialic acids. We identified two N-glycan sites at Asn-6 and Asn-12 and an O-glycan site at Thr-14 in the extracellular domain. Site-directed mutations at the glycan sites impaired the cell surface localization of Opalin. In addition to the somata and processes of oligodendrocytes, Opalin immunoreactivity was observed in myelinated axons in a spiral fashion, and was concentrated in the paranodal loop region. Immunogold electron microscopy demonstrated that Opalin was localized at particular sites in the paranodal loop membrane. These results suggest a role for highly sialylglycosylated Opalin in an intermembranous function of the myelin paranodal loops in the central nervous system.
Notes:
Koji Tsutsumi, Mineko Tomomura, Teiichi Furuichi, Shin-ichi Hisanaga (2008)  Palmitoylation-dependent endosomal localization of AATYK1A and its interaction with Src.   Genes Cells 13: 9. 949-964 Sep  
Abstract: Apoptosis-associated tyrosine kinase 1 (AATYK1), also named LMTK1, was previously isolated as an apoptosis-related gene from 32Dcl3 myeloid precursor cells, but its precise function remains unknown. AATYK1A, an isoform without a transmembrane domain, is highly expressed in neurons. We identified palmitoylation of AATYK1A at three N-terminal cysteine residues in cortical cultured neurons and COS-7 cells and found that palmitoylation determined localization of AATYK1A to the transferrin receptor-positive recycling endosomes. Further, we identified the tyrosine kinase Src as a novel AATYK1A-interacting protein. Src and Fyn phosphorylated AATYK1A at tyrosines 25 and 46 in a palmitoylation-dependent manner. The association of AATYK1A with Src in endosomes was also found to be palmitoylation-dependent. These results indicate that palmitoylation is a critical factor not only for the subcellular localization of AATYK1A but also for its interaction with Src.
Notes:
Akira Sato, Yukiko Sekine, Chihiro Saruta, Hirozumi Nishibe, Noriyuki Morita, Yumi Sato, Tetsushi Sadakata, Yo Shinoda, Toshio Kojima, Teiichi Furuichi (2008)  Cerebellar development transcriptome database (CDT-DB): profiling of spatio-temporal gene expression during the postnatal development of mouse cerebellum.   Neural Netw 21: 8. 1056-1069 Oct  
Abstract: A large amount of genetic information is devoted to brain development and functioning. The neural circuit of the mouse cerebellum develops through a series of cellular and morphological events (including neuronal proliferation and migration, axogenesis, dendritogenesis, synaptogenesis and myelination) all within three weeks of birth. All of these events are controlled by specific gene groups, whose temporal and spatial expression profiles must be encoded in the genome. To understand the genetic basis underlying cerebellar circuit development, we analyzed gene expression (transcriptome) during the developmental stages on a genome-wide basis. Spatio-temporal gene expression data were collected using in situ hybridization for spatial (cellular and regional) resolution and fluorescence differential display, GeneChip, microarray and RT-PCR for temporal (developmental time series) resolution, and were annotated using Gene Ontology (controlled terminology for genes and gene products) and anatomical context (cerebellar cell types and circuit structures). The annotated experimental data were integrated into a knowledge resource database, the Cerebellar Development Transcriptome Database (CDT-DB http://www.cdtdb.brain.riken.jp), with seamless links to the relevant information at various bioinformatics database websites. The CDT-DB not only provides a unique informatics tool for mining both spatial and temporal pattern information on gene expression in developing mouse brains, but also opens up opportunities to elucidate the transcriptome for cerebellar development.
Notes:
2007
Akiko Hayashi, Takaoki Kasahara, Kazuya Iwamoto, Mizuho Ishiwata, Mizue Kametani, Chihiro Kakiuchi, Teiichi Furuichi, Tadafumi Kato (2007)  The role of brain-derived neurotrophic factor (BDNF)-induced XBP1 splicing during brain development.   J Biol Chem 282: 47. 34525-34534 Nov  
Abstract: Accumulation of unfolded proteins in the endoplasmic reticulum initiates intracellular signaling termed the unfolded protein response (UPR). Although Xbp1 serves as a pivotal transcription factor for the UPR, the physiological role of UPR signaling and Xbp1 in the central nervous system remains to be elucidated. Here, we show that Xbp1 mRNA was highly expressed during neurodevelopment and activated Xbp1 protein was distributed throughout developing neurons, including neurites. The isolated neurite culture system and time-lapse imaging demonstrated that Xbp1 was activated in neurites in response to brain-derived neurotrophic factor (BDNF), followed by subsequent translocation of the active Xbp1 into the nucleus. BDNF-dependent neurite outgrowth was significantly attenuated in Xbp1(-/-) neurons. These findings suggest that BDNF initiates UPR signaling in neurites and that Xbp1, which is activated as part of the UPR, conveys the local information from neurites to the nucleus, contributing the neurite outgrowth.
Notes:
Jinhong Huang, Asako Furuya, Teiichi Furuichi (2007)  Very-KIND, a KIND domain containing RasGEF, controls dendrite growth by linking Ras small GTPases and MAP2.   J Cell Biol 179: 3. 539-552 Nov  
Abstract: The regulation of cytoskeletal components in the dendritic shaft core is critical for dendrite elongation and branching. Here, we report that a brain-specific Ras guanine nucleotide exchange factor (RasGEF) carrying two kinase non-catalytic C-lobe domains (KINDs), very-KIND (v-KIND), regulates microtubule-associated protein 2 (MAP2). v-KIND is expressed in developing mouse brain, predominantly in the cerebellar granule cells. v-KIND not only activates Ras small GTPases via the C-terminal RasGEF domain, but also specifically binds to MAP2 via the second KIND domain (KIND2), leading to threonine phosphorylation of MAP2. v-KIND overexpression suppresses dendritic extension and branching of hippocampal neurons and cerebellar granule cells, whereas knockdown of endogenous v-KIND expression promotes dendrite growth. These findings suggest that v-KIND mediates a signaling pathway that links Ras and MAP2 to control dendrite growth.
Notes:
M Tomomura, N Morita, F Yoshikawa, A Konishi, H Akiyama, T Furuichi, H Kamiguchi (2007)  Structural and functional analysis of the apoptosis-associated tyrosine kinase (AATYK) family.   Neuroscience 148: 2. 510-521 Aug  
Abstract: Apoptosis-associated tyrosine kinase (AATYK) is a protein kinase that is predominantly expressed in the nervous system and is involved in apoptosis and neurite growth of cerebellar granule cells. In this study, we cloned three new members of the mouse AATYK family, AATYK1B, AATYK2 and AATYK3. AATYK1B is a splicing variant of the previously reported AATYK1 (referred to as AATYK1A hereafter). In comparison with AATYK1A, these three AATYK members were characterized by having an extra N-terminal region that consists of a signal peptide-like sequence and a predicted transmembrane (TM) region, which is followed by a kinase domain and a long C-terminal domain. Both TM-containing AATYK isoforms (AATYK(+)TM: AATYK1B, 2, and 3) and TM-lacking isoform (AATYK(-)TM: AATYK1A) were recovered in membrane fractions, suggesting that AATYK(+)TM and AATYK(-)TM are transmembrane- and peripheral-membrane protein kinases, respectively. AATYK1A was recovered in the soluble fraction when the cells were treated with 2-bromo palmitate, suggesting that AATYK1A associates with membrane via palmitoylation. The kinase domain was highly conserved among all AATYK members and was shown to be catalytically active. Three AATYK family members were predominantly expressed in adult mouse brains with almost similar expression profiles: widespread distribution over the various brain regions, especially in the cerebellum and hippocampus, and up-regulated expression during development of the cerebellum. In cultured cerebellar granule cells, AATYK1 was abundantly localized in both soma and axons, AATYK2 distribution was restricted to soma, and AATYK3 was punctately present over the cells. AATYK1 was concentrated in the central domain of growth cones of dorsal root ganglion neurons. Our results indicate that AATYK family members are brain-dominant and membrane-associated kinases with slightly different distribution patterns in the developing and adult mouse brain, which may be involved in fine regulation of neuronal functions including neurite extension and apoptosis.
Notes:
Satoru Kawaguchi, Satoshi Shoji, Makoto Sunamori, Teiichi Furuichi, Seiko Kawano (2007)  The fundamental properties of Homer 1 in association with cardiac ryanodine receptor in mouse heart.   J Med Dent Sci 54: 1. 103-108 Mar  
Abstract: BACKGROUND: Homer, known as a scaffolding protein that regulates postsynapse signaling in neurons, has been poorly explored in cardiac research. We show the fundamental properties of Homer 1 in mouse heart in association with cardiac ryanodine receptor (RyR), a binding protein of Homer 1. METHODS AND RESULTS: Immunohistochemistry of adult mouse heart with Homer 1 antibody showed striated staining on Z-bands both in atria and ventricles. The interactions between Homer 1 and RyR were confirmed by co-immunoprecipitation assays. Immunostaining of adult isolated cardiomyocytes showed partial co-localization of both proteins. In neonatal primary cultures, targeting of Homer 1 preceded that of RyR in their Z-band arrangement. CONCLUSIONS: Homer 1 binds to RyR in adult mouse heart and precedes RyR in Z-band arrangement in the early postnatal period.
Notes:
Yoko Shiraishi-Yamaguchi, Teiichi Furuichi (2007)  The Homer family proteins.   Genome Biol 8: 2.  
Abstract: The Homer family of adaptor proteins consists of three members in mammals, and homologs are also known in other animals but not elsewhere. They are predominantly localized at the postsynaptic density in mammalian neurons and act as adaptor proteins for many postsynaptic density proteins. As a result of alternative splicing each member has several variants, which are classified primarily into the long and short forms. The long Homer forms are constitutively expressed and consist of two major domains: the amino-terminal target-binding domain, which includes an Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) homology 1 (EVH1) domain, and the carboxy-terminal self-assembly domain containing a coiled-coil structure and leucine zipper motif. Multimers of long Homer proteins, coupled through their carboxy-terminal domains, are thought to form protein clusters with other postsynaptic density proteins, which are bound through the amino-terminal domains. Such Homer-mediated clustering probably regulates or facilitates signal transduction or cross-talk between target proteins. The short Homer forms lack the carboxy-terminal domain; they are expressed in an activity-dependent manner as immediate-early gene products, possibly disrupting Homer clusters by competitive binding to target proteins. Homer proteins are also involved in diverse non-neural physiological functions.
Notes:
Tetsushi Sadakata, Miwa Washida, Noriyuki Morita, Teiichi Furuichi (2007)  Tissue distribution of Ca2+-dependent activator protein for secretion family members CAPS1 and CAPS2 in mice.   J Histochem Cytochem 55: 3. 301-311 Mar  
Abstract: The family of Ca2+-dependent activator proteins for secretion (CAPS) is involved in dense-core vesicle exocytosis. CAPS1/CADPS1 and CAPS2/CADPS2 have been identified in mammals. CAPS1 regulates catecholamine release from neuroendocrine cells, whereas CAPS2 is involved in the release of brain-derived neurotrophic factor and neurotrophin-3 from cerebellar granule cells. CAPS1 and CAPS2 are predominantly expressed in brain. Here we show the immunohistochemical localization of the CAPS family proteins in various mouse tissues. In the pituitary gland, CAPS1 and CAPS2 were localized to the pars nervosa and the pars intermedia, respectively. In non-neural tissues, CAPS1 was observed in the islets of Langerhans, minor cell types of the spleen and stomach, and medullary cells of the adrenal gland, whereas CAPS2 was present in bronchial epithelial cells, thyroid parafollicular cells, chief cells of the stomach, ductal epithelium of the salivary gland, kidney proximal tubules, and minor cell types of the thymus, spleen, and colon. These results suggest that secretion from distinct cell types in various tissues involves either or both members of the CAPS family.
Notes:
Tetsuo Ohnishi, Hisako Ohba, Kyung-Chang Seo, Jungkyun Im, Yumi Sato, Yoshimi Iwayama, Teiichi Furuichi, Sung-Kee Chung, Takeo Yoshikawa (2007)  Spatial expression patterns and biochemical properties distinguish a second myo-inositol monophosphatase IMPA2 from IMPA1.   J Biol Chem 282: 1. 637-646 Jan  
Abstract: Lithium is used in the clinical treatment of bipolar disorder, a disease where patients suffer mood swings between mania and depression. Although the mode of action of lithium remains elusive, a putative primary target is thought to be inositol monophosphatase (IMPase) activity. Two IMPase genes have been identified in mammals, the well characterized myo-inositol monophosphatase 1 (IMPA1) and myo-inositol monophosphatase 2 (IMPA2). Several lines of genetic evidence have implicated IMPA2 in the pathogenesis of not only bipolar disorder but also schizophrenia and febrile seizures. However, little is known about the protein, although it is predicted to have lithium-inhibitable IMPase activity based on its homology to IMPA1. Here we present the first biochemical study comparing the enzyme activity of IMPA2 to that of IMPA1. We demonstrate that in vivo, IMPA2 forms homodimers but no heterodimers with IMPA1. Recombinant IMPA2 exhibits IMPase activity, although maximal activity requires higher concentrations of magnesium and a higher pH. IMPA2 shows significantly lower activity toward myo-inositol monophosphate than IMPA1. We therefore screened for additional substrates that could be more efficiently dephosphorylated by IMPA2, but failed to find any. Importantly, when using myo-inositol monophosphate as a substrate, the IMPase activity of IMPA2 was inhibited at high lithium and restricted magnesium concentrations. This kinetics distinguishes it from IMPA1. We also observed a characteristic pattern of differential expression between IMPA1 and IMPA2 in a selection of tissues including the brain, small intestine, and kidney. These data suggest that IMPA2 has a separate function in vivo from that of IMPA1.
Notes:
Tetsushi Sadakata, Wataru Kakegawa, Akira Mizoguchi, Miwa Washida, Ritsuko Katoh-Semba, Fumihiro Shutoh, Takehito Okamoto, Hisako Nakashima, Kazushi Kimura, Mika Tanaka, Yukiko Sekine, Shigeyoshi Itohara, Michisuke Yuzaki, Soichi Nagao, Teiichi Furuichi (2007)  Impaired cerebellar development and function in mice lacking CAPS2, a protein involved in neurotrophin release.   J Neurosci 27: 10. 2472-2482 Mar  
Abstract: Ca2+-dependent activator protein for secretion 2 (CAPS2/CADPS2) is a secretory granule-associated protein that is abundant at the parallel fiber terminals of granule cells in the mouse cerebellum and is involved in the release of neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF), both of which are required for cerebellar development. The human homolog gene on chromosome 7 is located within susceptibility locus 1 of autism, a disease characterized by several cerebellar morphological abnormalities. Here we report that CAPS2 knock-out mice are deficient in the release of NT-3 and BDNF, and they consequently exhibit suppressed phosphorylation of Trk receptors in the cerebellum; these mice exhibit pronounced impairments in cerebellar development and functions, including neuronal survival, differentiation and migration of postmitotic granule cells, dendritogenesis of Purkinje cells, lobulation between lobules VI and VII, structure and vesicular distribution of parallel fiber-Purkinje cell synapses, paired-pulse facilitation at parallel fiber-Purkinje cell synapses, rotarod motor coordination, and eye movement plasticity in optokinetic training. Increased granule cell death of the external granular layer was noted in lobules VI-VII and IX, in which high BDNF and NT-3 levels are specifically localized during cerebellar development. Therefore, the deficiency of CAPS2 indicates that CAPS2-mediated neurotrophin release is indispensable for normal cerebellar development and functions, including neuronal differentiation and survival, morphogenesis, synaptic function, and motor learning/control. The possible involvement of the CAPS2 gene in the cerebellar deficits of autistic patients is discussed.
Notes:
Tetsushi Sadakata, Miwa Washida, Yoshimi Iwayama, Satoshi Shoji, Yumi Sato, Takeshi Ohkura, Ritsuko Katoh-Semba, Mizuho Nakajima, Yukiko Sekine, Mika Tanaka, Kazuhiko Nakamura, Yasuhide Iwata, Kenji J Tsuchiya, Norio Mori, Sevilla D Detera-Wadleigh, Hironobu Ichikawa, Shigeyoshi Itohara, Takeo Yoshikawa, Teiichi Furuichi (2007)  Autistic-like phenotypes in Cadps2-knockout mice and aberrant CADPS2 splicing in autistic patients.   J Clin Invest 117: 4. 931-943 Apr  
Abstract: Autism, characterized by profound impairment in social interactions and communicative skills, is the most common neurodevelopmental disorder, and its underlying molecular mechanisms remain unknown. Ca(2+)-dependent activator protein for secretion 2 (CADPS2; also known as CAPS2) mediates the exocytosis of dense-core vesicles, and the human CADPS2 is located within the autism susceptibility locus 1 on chromosome 7q. Here we show that Cadps2-knockout mice not only have impaired brain-derived neurotrophic factor release but also show autistic-like cellular and behavioral phenotypes. Moreover, we found an aberrant alternatively spliced CADPS2 mRNA that lacks exon 3 in some autistic patients. Exon 3 was shown to encode the dynactin 1-binding domain and affect axonal CADPS2 protein distribution. Our results suggest that a disturbance in CADPS2-mediated neurotrophin release contributes to autism susceptibility.
Notes:
Jun Aruga, Fumio Yoshikawa, Yayoi Nozaki, Yoshiyuki Sakaki, Atsushi Toyoda, Teiichi Furuichi (2007)  An oligodendrocyte enhancer in a phylogenetically conserved intron region of the mammalian myelin gene Opalin.   J Neurochem 102: 5. 1533-1547 Sep  
Abstract: Opalin is a transmembrane protein detected specifically in mammalian oligodendrocytes. Opalin homologs are found only in mammals and not in the genome sequences of other animal classes. We first determined the nucleotide sequences of Opalin orthologs and their flanking regions derived from four prosimians, a group of primitive primates. A global comparison revealed that an evolutionarily conserved region exists in the first intron of Opalin. When the conserved domain was assayed for its enhancer activity in transgenic mice, oligodendrocyte-directed expression was observed. In an oligodendroglial cell line, Oli-neu, the conserved domain showed oligodendrocyte-directed expression. The conserved domain is composed of eight subdomains, some of which contain binding sites for Myt1 and cAMP-response element binding protein (CREB). Deletion analysis and cotransfection experiments revealed that the subdomains have critical roles in Opalin gene expression. Over-expression of Myt1, treatment of the cell with leukemia inhibitory factor (LIF), and cAMP analog (CREB activator) enhanced the expression of endogenous Opalin in Oli-neu cells and activated the oligodendrocyte enhancer. These results suggest that LIF, cAMP signaling cascades and Myt1 play significant roles in the differentiation of oligodendrocytes through their action on the Opalin oligodendrocyte enhancer.
Notes:
Tetsushi Sadakata, Miwa Washida, Teiichi Furuichi (2007)  Alternative splicing variations in mouse CAPS2: differential expression and functional properties of splicing variants.   BMC Neurosci 8: 04  
Abstract: BACKGROUND: Ca2+-dependent activator protein 2 (CAPS2/CADPS2) is a secretory vesicle-associated protein involved in the release of neurotrophin. We recently reported that an aberrant, alternatively spliced CAPS2 mRNA that lacks exon 3 (CAPS2Deltaexon3) is detected in some patients with autism. Splicing variations in mouse CAPS2 and their expression and functions remain unclear. RESULTS: In this study, we defined 31 exons in the mouse CAPS2 gene and identified six alternative splicing variants, CAPS2a-f. CAPS2a is an isoform lacking exons 22 and 25, which encode part of the Munc13-1-homologous domain (MHD). CAPS2b lacks exon 25. CAPS2c lacks exons 11 and 22. CAPS2d, 2e, and 2f have C-terminal deletions from exon 14, exon 12, and exon 5, respectively. On the other hand, a mouse counterpart of CAPS2Deltaexon3 was not detected in the mouse tissues tested. CAPS2b was expressed exclusively in the brain, and the other isoforms were highly expressed in the brain, but also in some non-neural tissues. In the brain, all isoforms showed predominant expression patterns in the cerebellum. In the developing cerebellum, CAPS2b showed an up-regulated expression pattern, whereas the other isoforms exhibited transiently peaked expression patterns. CAPS2 proteins were mostly recovered in soluble fractions, but some were present in membrane fractions, except for CAPS2c and 2f, both of which lack the PH domain, suggesting that the PH domain is important for membrane association. In contrast to CAPS2a and 2b, CAPS2c showed slightly decreased BDNF-releasing activity, which is likely due to the C-terminal truncation of the PH domain in CAPS2c. CONCLUSION: This study indicates that, in mouse, there are six splicing variants of CAPS2 (CAPS2a-f), and that these are subdivided into two groups: a long form containing the C-terminal MHD and a short form lacking the C-terminal MHD. These results demonstrate that the splicing variations correlate with their expression patterns and intracellular distribution, and affect BDNF release; however, whether or not the short forms possess activities other than BDNF release, for example as natural dominant-negative isoforms, remains to be determined.
Notes:
Rieko Ajima, Keiko Kajiya, Takeshi Inoue, Masachika Tani, Yoko Shiraishi-Yamaguchi, Masahiro Maeda, Tatsuya Segawa, Teiichi Furuichi, Kazuo Sutoh, Jun Yokota (2007)  HOMER2 binds MYO18B and enhances its activity to suppress anchorage independent growth.   Biochem Biophys Res Commun 356: 4. 851-856 May  
Abstract: MYO18B is a class XVIII myosin, cloned as a tumor suppressor gene candidate. To investigate the mechanisms of MYO18B-dependent tumor suppression, MYO18B-interacting proteins were searched for by a yeast two-hybrid screen. HOMER2, a Homer/Ves1 family protein, was identified as a binding partner of MYO18B. These proteins co-localized in the regions of membrane protrusion and stress fiber, which are known as ones with filamentous actin-rich structures. Expression of HOMER2 enhanced the ability of MYO18B to suppress anchorage-independent growth. These results indicate that HOMER2 and MYO18B cooperate together in tumor suppression.
Notes:
Ikuo Ogiwara, Hiroyuki Miyamoto, Noriyuki Morita, Nafiseh Atapour, Emi Mazaki, Ikuyo Inoue, Tamaki Takeuchi, Shigeyoshi Itohara, Yuchio Yanagawa, Kunihiko Obata, Teiichi Furuichi, Takao K Hensch, Kazuhiro Yamakawa (2007)  Na(v)1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation.   J Neurosci 27: 22. 5903-5914 May  
Abstract: Loss-of-function mutations in human SCN1A gene encoding Na(v)1.1 are associated with a severe epileptic disorder known as severe myoclonic epilepsy in infancy. Here, we generated and characterized a knock-in mouse line with a loss-of-function nonsense mutation in the Scn1a gene. Both homozygous and heterozygous knock-in mice developed epileptic seizures within the first postnatal month. Immunohistochemical analyses revealed that, in the developing neocortex, Na(v)1.1 was clustered predominantly at the axon initial segments of parvalbumin-positive (PV) interneurons. In heterozygous knock-in mice, trains of evoked action potentials in these fast-spiking, inhibitory cells exhibited pronounced spike amplitude decrement late in the burst. Our data indicate that Na(v)1.1 plays critical roles in the spike output from PV interneurons and, furthermore, that the specifically altered function of these inhibitory circuits may contribute to epileptic seizures in the mice.
Notes:
Masaaki Kuwajima, Marlin H Dehoff, Teiichi Furuichi, Paul F Worley, Randy A Hall, Yoland Smith (2007)  Localization and expression of group I metabotropic glutamate receptors in the mouse striatum, globus pallidus, and subthalamic nucleus: regulatory effects of MPTP treatment and constitutive Homer deletion.   J Neurosci 27: 23. 6249-6260 Jun  
Abstract: Group I metabotropic glutamate receptors (mGluRs), mGluR1 and mGluR5, regulate activity in the globus pallidus (GP) and subthalamic nucleus (STN). To test whether the localization of group I mGluRs is altered in parkinsonism, we used immunoelectron microscopy to analyze the subcellular and subsynaptic distribution of mGluR1a and mGluR5 in GP and STN of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Homer1 and Homer2 knock-out mice were used to assess the role of Homer in MPTP-induced redistribution of group I mGluRs. We also examined the effects of MPTP on the expression levels of group I mGluRs and Homer proteins in GP and striatum. MPTP treatment significantly reduced the expression levels of H1a and mGluR1a in striatum but not in GP. Although light microscopy did not reveal noticeable effects of MPTP treatment on the distribution of group I mGluRs and Homer proteins in GP and STN, specific changes in the ultrastructural localization of mGluR1a were found in MPTP-treated normal and Homer knock-out mice. An increase in the expression of presynaptic axonal and terminal mGluR1a labeling and an increased level of mGluR1a immunoreactivity in the postsynaptic specialization of putative GABAergic synapses were among the most significant effects induced by dopamine depletion. However, neither of these changes was found for mGluR5, which, in contrast, displayed complex regulatory alterations in its subsynaptic distribution in response to Homer deletion and MPTP lesion. Thus, nigrostriatal dopaminergic lesion and Homer deletion lead to changes in the trafficking of group I mGluRs in vivo that are specific to receptor subtypes and brain areas.
Notes:
2006
Tetsushi Sadakata, Makoto Itakura, Shunji Kozaki, Yukiko Sekine, Masami Takahashi, Teiichi Furuichi (2006)  Differential distributions of the Ca2+ -dependent activator protein for secretion family proteins (CAPS2 and CAPS1) in the mouse brain.   J Comp Neurol 495: 6. 735-753 Apr  
Abstract: The Ca(2+)-dependent activator protein for secretion (CAPS/Cadps) family consists of two members, CAPS1 and CAPS2, and plays an important role in secretory granule exocytosis. It has been shown that CAPS1 regulates catecholamine release from neuroendocrine cells, whereas CAPS2 is involved in the release of two neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), from parallel fibers of cerebellar granule cells. Although both CAPS proteins are expressed predominantly in the brain, their cellular and regional distributions in the brain are largely unknown. In this study we analyzed the immunohistochemical distributions of the CAPS family proteins in the mouse brain. In most areas of the embryonic nervous system CAPS1 and CAPS2 proteins were complementarily expressed. In the postnatal brain, CAPS1 was widespread at different levels. On the other hand, CAPS2 was localized to distinct cell types and fibers of various brain regions, including the olfactory bulb, cerebrum, hippocampal formation, thalamus, mesencephalic tegmentum, cerebellum, medulla, and spinal cord, except for some regions that overlapped with CAPS1. These CAPS2 cellular distribution patterns had the marked feature of coinciding with those of BDNF in various brain regions. Immunolabels for CAPS2 were also colocalized with those for some proteins related to exocytosis (VAMP and SNAP-25) and endocytosis (Dynamin I) in the cell soma and processes of the mesencephalic tegmentum and cerebellum, suggesting that these proteins might be involved in the dynamics of CAPS2-associated vesicles, although their colocalization on vesicles remains elusive. These results demonstrate that the CAPS family proteins are involved in the secretion of different secretory substances in developing and postnatal brains, and that CAPS2 is probably involved in BDNF secretion in many brain areas.
Notes:
Seiko Kawano, Keishi Otsu, Akinori Kuruma, Satoshi Shoji, Eri Yanagida, Yuko Muto, Fumio Yoshikawa, Yoshiyuki Hirayama, Katsuhiko Mikoshiba, Teiichi Furuichi (2006)  ATP autocrine/paracrine signaling induces calcium oscillations and NFAT activation in human mesenchymal stem cells.   Cell Calcium 39: 4. 313-324 Apr  
Abstract: Human bone marrow-derived mesenchymal stem cells (hMSCs) have the potential to differentiate into several types of cells. Calcium ions (Ca(2+)) play an important role in the differentiation and proliferation of hMSCs. We have demonstrated that spontaneous [Ca(2+)](i) oscillations occur without agonist stimulation in hMSCs. However, the precise mechanism of its generation remains unclear. In this study, we investigated the mechanism and role of spontaneous [Ca(2+)](i) oscillations in hMSCs and found that IP(3)-induced Ca(2+) release is essential for spontaneous [Ca(2+)](i) oscillations. We also found that an ATP autocrine/paracrine signaling pathway is involved in the oscillations. In this pathway, an ATP is secreted via a hemi-gap-junction channel; it stimulates the P(2)Y(1) receptors, resulting in the activation of PLC-beta to produce IP(3). We were able to pharmacologically block this pathway, and thereby to completely halt the [Ca(2+)](i) oscillations. Furthermore, we found that [Ca(2+)](i) oscillations were associated with NFAT translocation into the nucleus in undifferentiated hMSCs. Once the ATP autocrine/paracrine signaling pathway was blocked, it was not possible to detect the nuclear translocation of NFAT, indicating that the activation of NFAT is closely linked to [Ca(2+)](i) oscillations. As the hMSCs differentiated to adipocytes, the [Ca(2+)](i) oscillations disappeared and the translocation of NFAT ceased. These results provide new insight into the molecular and physiological mechanism of [Ca(2+)](i) oscillations in undifferentiated hMSCs.
Notes:
Tetsushi Sadakata, Teiichi Furuichi (2006)  Identification and mRNA expression of Ogdh, QP-C, and two predicted genes in the postnatal mouse brain.   Neurosci Lett 405: 3. 217-222 Sep  
Abstract: By fluorescent differential display, we identified six transcripts (CAPS2/Cadps2, Cdh22, b1402, c1502, d1401, and d1501) that showed the differential expression patterns during the postnatal development of the mouse cerebellum. We further analyzed the latter four transcripts whose cellular localizations in developing mouse brains have not been studied. In the postnatal cerebellum, clones c1502 and d1501 were transiently up-regulated; clone b1402 was up-regulated; and clone d1401 remained relatively constant. Sequence analysis revealed that d1401 and c1502 were derivatives of Ogdh (oxoglutarate dehydrogenase) and QP-C (ubiquinol-cytochrome c reductase complex ubiquinone-binding protein), respectively. Moreover, b1402 and d1501 were identified as transcripts of a predicted gene (4933409K07Rik) and a novel EST, respectively. b1402 and d1501 were abundantly present in the cerebellum, whereas c1502/QP-C and d1401/Ogdh were widely distributed in various mouse tissues. In the postnatal mouse brain, moderately high mRNA levels of b1402 were restricted to the olfactory bulb, striatum, cerebral cortex (layers II-III and VI), hippocampus (dentate granule cells), and cerebellum (granule cells). c1502/QP-C mRNA was localized at high levels in the olfactory bulb, cerebral cortex, hippocampus, thalamus (anterodorsal nucleus, parafacicularis nucleus), tegmentum (red nucleus), cerebellum (Purkinje and granule cells), and pons (pontine nucleus, reticulotegmental nucleus, trapezoid body, vestibular nucleus). High mRNA levels of d1401/Ogdh were observed in the olfactory bulb, hippocampus, cerebellum, and pons, whereas those of d1501 were detected in the granule cells of the olfactory bulb, dentate gyrus, and cerebellum.
Notes:
Jinhong Huang, Ryuichi Sakai, Teiichi Furuichi (2006)  The docking protein Cas links tyrosine phosphorylation signaling to elongation of cerebellar granule cell axons.   Mol Biol Cell 17: 7. 3187-3196 Jul  
Abstract: Crk-associated substrate (Cas) is a tyrosine-phosphorylated docking protein that is indispensable for the regulation of the actin cytoskeletal organization and cell migration in fibroblasts. The function of Cas in neurons, however, is poorly understood. Here we report that Cas is dominantly enriched in the brain, especially the cerebellum, of postnatal mice. During cerebellar development, Cas is highly tyrosine phosphorylated and is concentrated in the neurites and growth cones of granule cells. Cas coimmunoprecipitates with Src family protein tyrosine kinases, Crk, and cell adhesion molecules and colocalizes with these proteins in granule cells. The axon extension of granule cells is inhibited by either RNA interference knockdown of Cas or overexpression of the Cas mutant lacking the YDxP motifs, which are tyrosine phosphorylated and thereby interact with Crk. These findings demonstrate that Cas acts as a key scaffold that links the proteins associated with tyrosine phosphorylation signaling pathways to the granule cell axon elongation.
Notes:
2005
Mineko Tomomura, Teiichi Furuichi (2005)  Apoptosis-associated tyrosine kinase (AATYK) has differential Ca2+-dependent phosphorylation states in response to survival and apoptotic conditions in cerebellar granule cells.   J Biol Chem 280: 42. 35157-35163 Oct  
Abstract: In dissociated cultures of cerebellar granule cells, extracellular high potassium (HK) and low potassium (LK) concentrations control cell survival and apoptosis, respectively. Apoptosis-associated tyrosine kinase (AATYK) is up-regulated during the LK-induced apoptosis. Overexpression of wild-type AATYK, but not its kinase-deficient mutant, stimulates apoptosis in LK. In this study, we analyzed the relationship between the phosphorylation states of AATYK and the survival of granule cells. AATYK was hypophosphorylated in HK, whereas it was hyperphosphorylated in apoptotic LK. HK-dependent hypophosphorylation of AATYK was controlled by L-type voltage-dependent calcium channel-mediated Ca2+ influx followed by Ca2+-dependent protein phosphatase activity. However, LK-induced hyperphosphorylation of AATYK at multiple sites was blocked by kainate, lithium, and protein kinase C-delta inhibitor. AATYK phosphorylation was concurrent with c-Jun phosphorylation. In addition, mutations of AATYK on either the kinase domain or Ser-480, Ser-558, and Ser-566 residues suppressed the LK-induced hyperphosphorylation and apoptosis, suggesting the involvement of self-kinase activity and these Ser residues in this process. Our data therefore indicate that the phosphorylation states of AATYK are closely related to the HK-induced survival and LK-induced apoptosis of cerebellar granule cells.
Notes:
Miwako Iwai, Yoko Tateishi, Mitsuharu Hattori, Akihiro Mizutani, Takeshi Nakamura, Akira Futatsugi, Takafumi Inoue, Teiichi Furuichi, Takayuki Michikawa, Katsuhiko Mikoshiba (2005)  Molecular cloning of mouse type 2 and type 3 inositol 1,4,5-trisphosphate receptors and identification of a novel type 2 receptor splice variant.   J Biol Chem 280: 11. 10305-10317 Mar  
Abstract: We isolated cDNAs encoding type 2 and type 3 inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)R2 and IP(3)R3, respectively) from mouse lung and found a novel alternative splicing segment, SI(m2), at 176-208 of IP(3)R2. The long form (IP(3)R2 SI(m2)(+)) was dominant, but the short form (IP(3)R2 SI(m2)(-)) was detected in all tissues examined. IP(3)R2 SI(m2)(-) has neither IP(3) binding activity nor Ca(2+) releasing activity. In addition to its reticular distribution, IP(3)R2 SI(m2)(+) is present in the form of clusters in the endoplasmic reticulum of resting COS-7 cells, and after ATP or Ca(2+) ionophore stimulation, most of the IP(3)R2 SI(m2)(+) is in clusters. IP(3)R3 is localized uniformly on the endoplasmic reticulum of resting cells and forms clusters after ATP or Ca(2+) ionophore stimulation. IP(3)R2 SI(m2)(-) does not form clusters in either resting or stimulated cells. IP(3) binding-deficient site-directed mutants of IP(3)R2 SI(m2)(+) and IP(3)R3 fail to form clusters, indicating that IP(3) binding is involved in the cluster formation by these isoforms. Coexpression of IP(3)R2 SI(m2)(-) prevents stimulus-induced IP(3)R clustering, suggesting that IP(3)R2 SI(m2)(-) functions as a negative coordinator of stimulus-induced IP(3)R clustering. Expression of IP(3)R2 SI(m2)(-) in CHO-K1 cells significantly reduced ATP-induced Ca(2+) entry, but not Ca(2+) release, suggesting that the novel splice variant of IP(3)R2 specifically influences the dynamics of the sustained phase of Ca(2+) signals.
Notes:
Tohru Matsuki, Gen Hori, Teiichi Furuichi (2005)  Gene expression profiling during the embryonic development of mouse brain using an oligonucleotide-based microarray system.   Brain Res Mol Brain Res 136: 1-2. 231-254 May  
Abstract: We analyzed gene expression profiles in embryonic day 12, 15, 18 and postnatal day 0 mouse brains by utilizing a GeneChip microarray. Significant differential expression was observed in 1413 of 12,422 (11.4%) represented on the chip. Then, 397 genes known to be related to neural development and functions were selected and analyzed in more detail. Clustering of the differentially expressed genes in terms of gene function and their temporal expression patterns indicated an aspect of the genetic foundation that underlies cellular events. Moreover, we identified a novel gene that encodes a putative protein kinase, Ebr kinase, which is differentially expressed in the developing brain.
Notes:
2004
Eri Yanagida, Satoshi Shoji, Yoshiyuki Hirayama, Fumio Yoshikawa, Keishi Otsu, Hiroshi Uematsu, Masayasu Hiraoka, Teiichi Furuichi, Seiko Kawano (2004)  Functional expression of Ca2+ signaling pathways in mouse embryonic stem cells.   Cell Calcium 36: 2. 135-146 Aug  
Abstract: Mouse embryonic stem (mES) cells have the potential to differentiate into all types of cells, but the physiological properties of undifferentiated mES cells, including Ca2+ signaling systems, are not fully understood. In this study, we investigated Ca2+ signaling pathways in mES cells by using confocal Ca2+ imaging systems, patch clamp techniques and RT-PCR. The stimulations with ATP and histamine (His) induced a transient increase of intracellular Ca2+ concentration ([Ca2+]i), which were prevented by the pretreatment of 2-amino-ethoxydiphenyl borate (2-APB), a blocker for inositol-1,4,5-triphosphate receptors (InsP3Rs). The application of caffeine (Caff) or ryanodine (Ry) did not change [Ca2+]i. When stores were depleted with Ca2+ -ATPase blocker, thapsigargin (TG), or histamine, the capacitative Ca2+ entry (CCE) was observed. In whole cell patch clamp mode, store-operated Ca2+ currents could be recorded in cells treated with histamine and thapsigargin. On the other hand, voltage-operated Ca2+ channels (VOCCs) could not be elicited. The application of blockers for plasma membrane Ca2+ pump (PMCAs) (carboxeosin or caloxin2A1) induced a large increase of [Ca2+]i. When the Na+/Ca2+ exchangers (NCXs) were blocked by Na+ free solution or KBR7943, [Ca2+]i was also elevated. Using RT-PCR, mRNAs for InsP3Rs type-1, -2, and -3, PMCA-1 and -4, NCX-1, -2, and -3 could be detected. From these results, we conclude that Ca2+ release from ER is mediated by InsP3Rs in mES cells before differentiation and Ca2+ entry through plasma membrane is mainly mediated by the store-operated Ca2+ channels (SOCs). For the Ca2+ extrusion systems, both NCXs and PMCAs play important roles for maintaining the low level of [Ca2+]i.
Notes:
Yoshihiko Kakinuma, Fumiji Saito, Shizue Ohsawa, Teiichi Furuichi, Masayuki Miura (2004)  A sulfatase regulating the migratory potency of oligodendrocyte progenitor cells through tyrosine phosphorylation of beta-catenin.   J Neurosci Res 77: 5. 653-661 Sep  
Abstract: By using cDNA subtraction, we identified an extracellular sulfatase (RsulfFP1) from rat oligodendrocyte progenitor cells (OPCs) whose mRNA expression is down-regulated by tumor necrosis factor-alpha. RsulfFP1 mRNA was expressed specifically in the floor plate and the ventral portion of the rat spinal cord at E15. The expression pattern of RsulfFP1 overlapped with the OPCs, which are also located at the ventral region of the ventricular zone. After this stage, RsulfFP1 expression was attenuated, and the OPCs efficiently migrated throughout the spinal cord. The modification of CG-4 cells, a cell line established from rat O2A cells, by RsulfFP1 activated canonical Wnt signaling. Furthermore, the deletion of RsulfFP1 expression by an antisense oligonucleotide caused impairment of OPC migration in rat spinal cord slice culture. Modification of cells by RsulfFP1 resulted in the increased tyrosine phosphorylation of immunoprecipitated beta-catenin, suggesting that sulfation of the extracellular matrix induced by this sulfatase might be responsible for an increase in Wnt signaling that is involved in the migration of OPCs. Thus, the present study revealed that a sulfatase is responsible for the migration of OPCs and activates intracellular mechanisms that regulate migration.
Notes:
Yumi Sato, Yoko Shiraishi, Teiichi Furuichi (2004)  Cell specificity and efficiency of the Semliki forest virus vector- and adenovirus vector-mediated gene expression in mouse cerebellum.   J Neurosci Methods 137: 1. 111-121 Aug  
Abstract: Establishing efficient gene transfer and expression in post-mitotic neurons is important in understanding the genetic basis of neural circuits with cellular complexity. This study evaluates the properties of exogenous green fluorescent protein (GFP) expression mediated by the Semliki forest virus (SFV) and adenovirus (Ad) vectors in dissociated and slice cultures of the mouse cerebellum. Infection with SFV-GFP resulted in early-onset and high-level GFP expression in about 90% of Purkinje cells and in about 40% of granule cells in dissociated cultures at 1 day after infection. Two days after infection, GFP-positive cells showed signs of SFV-derived cytotoxicity. Ad-GFP infected almost all astrocytes and granule cells in dissociated cultures, and showed a steady increase in GFP fluorescence with a plateau at around 2 days post-infection. Ad vector-mediated GFP expression lasted for several weeks with no significant cell damage. In the slice cultures, both viral vectors mainly infected astroglial cells, but also showed a similar cell preference as that in dissociated cultures. These data indicate that the use of different viral vectors and infection conditions offers a powerful means of expressing exogenous genes in cerebellar cultures with different cell-type specificity and timing and duration of expression.
Notes:
Yoko Shiraishi, Akihiro Mizutani, Shigeki Yuasa, Katsuhiko Mikoshiba, Teiichi Furuichi (2004)  Differential expression of Homer family proteins in the developing mouse brain.   J Comp Neurol 473: 4. 582-599 Jun  
Abstract: Homer acts as a postsynaptic adaptor protein that links multiple targets, such as proteins involved in glutamate receptor signaling. We report the differential expression of the long form of Homer proteins produced from three distinctive genes during postnatal development of the mouse brain. Homer 1b/c and Cupidin/Homer 2a/b are widespread throughout the developing brain and are down-regulated in hindbrain-origin regions, such as the cerebellum, pons, and medulla oblongata. In contrast, Homer 3a/b is restricted to the cerebellum, hippocampus, and neonatal olfactory bulb. In the cerebellum, Homer 1b/c and Cupidin/Homer 2a/b predominate in the postsynapses of developing granule cells, whereas Homer 3a/b is concentrated in the dendritic spines of Purkinje cells and their axons. The down-regulation of Homer 1b/c and Cupidin/Homer 2a/b is in marked contrast to the up-regulation of Homer 3a/b between the first and the second postnatal weeks. In the hippocampus, Homer 1b/c and Cupidin/Homer 2a/b are largely located in the CA1 region and the CA1-CA2 region, respectively, whereas Homer 3a/b is largely distributed in the CA2-CA3 region and peaks around the third postnatal week. In hippocampal cell cultures, Homer 1b/c and Cupidin/Homer 2a/b are expressed in inhibitory and excitatory neurons, whereas Homer 3a/b is largely expressed in excitatory neurons but not in inhibitory neurons. In the developing olfactory bulb, Homer 1b/c and Cupidin/Homer 2a/b are up-regulated in the granular, external plexiform, and glomerular layers, whereas Homer 3a/b drastically decreases in these regions within the first postnatal week. Cupidin/Homer 2a/b is also expressed in olfactory sensory neurons within a distinct olfactory epithelial zone and is then widely distributed to both the axons in the olfactory nerve layer and the cilia in the olfactory epithelium. These results demonstrate that Homer family members have distinct regional, cellular, and subcellular distributions in time and space during postnatal brain development.
Notes:
Tetsushi Sadakata, Akira Mizoguchi, Yumi Sato, Ritsuko Katoh-Semba, Mitsunori Fukuda, Katsuhiko Mikoshiba, Teiichi Furuichi (2004)  The secretory granule-associated protein CAPS2 regulates neurotrophin release and cell survival.   J Neurosci 24: 1. 43-52 Jan  
Abstract: Neurotrophins are key modulators of various neuronal functions, including differentiation, survival, and synaptic plasticity, but the molecules that regulate their secretion are poorly understood. We isolated a clone that is predominantly expressed in granule cells of postnatally developing mouse cerebellum, which turned out to be a paralog of CAPS (Ca2+-dependent activator protein for secretion), and named CAPS2. CAPS2 is enriched on vesicular structures of presynaptic parallel fiber terminals of granule cells connecting postsynaptic spines of Purkinje cell dendrites. Vesicle factions affinity-purified by the CAPS2 antibody from mouse cerebella contained significant amounts of neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF), and chromogranin B but not marker proteins for synaptic vesicle synaptophysin and synaptotagmin. In cerebellar primary cultures, punctate CAPS2 immunoreactivities are primarily colocalized with those of NT-3 and BDNF and near those of a postsynaptic marker, postsynaptic density-95, around dendritic arborization of Purkinje cells. Exogenously expressed CAPS2 enhanced release of exogenous NT-3 and BDNF from PC12 cells and endogenous NT-3 from cultured granule cells in a depolarization-dependent manner. Moreover, the overexpression of CAPS2 in granule cells promotes the survival of Purkinje cells in cerebellar cultures. Thus, we suggest that CAPS2 mediates the depolarization-dependent release of NT-3 and BDNF from granule cells, leading to regulation in cell differentiation and survival during cerebellar development.
Notes:
2003
Yoko Shiraishi, Akihiro Mizutani, Katsuhiko Mikoshiba, Teiichi Furuichi (2003)  Coincidence in dendritic clustering and synaptic targeting of homer proteins and NMDA receptor complex proteins NR2B and PSD95 during development of cultured hippocampal neurons.   Mol Cell Neurosci 22: 2. 188-201 Feb  
Abstract: Homer is a scaffold protein that binds glutamate receptor complexes and actin cytoskeleton in postsynapses. The present study analyzed developmental changes in subcellular localization of Homer proteins in cultured hippocampal neurons. All three Homer family proteins, Homer 1b/c, Cupidin/Homer 2, and Homer 3, not only form heteromeric coclusters, but also localize close to the NMDA receptor complex including the NR2B subunit and PSD95 throughout dendritic and synaptic differentiation. Synaptic clustering of Homer proteins is enhanced by simultaneous blockade of NMDA receptor and cAMP phosphodiesterase activities, as is clustering of NMDA receptors. Homer proteins colocalize with actin-cytoskeletal proteins F-actin and Drebrin partially during the middle stage and to a greater extent in the late stage, and with the GluR1 subunit of AMPA receptors only in the late stage. Clustering sites of Homer are not synaptic in early-middle stages, but become synaptic in the late stage, as deduced from synaptic targeting of Bassoon, Synaptophysin, and N-cadherin. Our results indicate a coincidence in dendritic clustering in addition to developmental and activity-regulated synaptic targeting between Homer and the NMDA receptor complex.
Notes:
Keiko Uchida, Hiroshi Miyauchi, Teiichi Furuichi, Takayuki Michikawa, Katsuhiko Mikoshiba (2003)  Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor.   J Biol Chem 278: 19. 16551-16560 May  
Abstract: To understand the molecular mechanism of ligand-induced gating of the inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R)/Ca(2+) release channel, we analyzed the channel properties of deletion mutants retaining both the IP(3)-binding and channel-forming domains of IP(3)R1. Using intrinsically IP(3)R-deficient cells as the host cells for receptor expression, we determined that six of the mutants, those lacking residues 1-223, 651-1130, 1267-2110, 1845-2042, 1845-2216, and 2610-2748, did not exhibit any measurable Ca(2+) release activity, whereas the mutants lacking residues 1131-1379 and 2736-2749 retained the activity. Limited trypsin digestion showed that not only the IP(3)-gated Ca(2+)-permeable mutants lacking residues 1131-1379 and 2736-2749, but also two nonfunctional mutants lacking residues 1-223 and 651-1130, retained the normal folding structure of at least the C-terminal channel-forming domain. These results indicate that two regions of IP(3)R1, viz. residues 1-223 and 651-1130, are critical for IP(3)-induced gating. We also identified a highly conserved cysteine residue at position 2613, which is located within the C-terminal tail, as being essential for channel opening. Based on these results, we propose a novel five-domain structure model in which both N-terminal and internal coupling domains transduce ligand-binding signals to the C-terminal tail, which acts as a gatekeeper that triggers opening of the activation gate of IP(3)R1 following IP(3) binding.
Notes:
Mineko Tomomura, Yuki Hasegawa, Tsutomu Hashikawa, Akito Tomomura, Michisuke Yuzaki, Teiichi Furuichi, Ryoji Yano (2003)  Differential expression and function of apoptosis-associated tyrosine kinase (AATYK) in the developing mouse brain.   Brain Res Mol Brain Res 112: 1-2. 103-112 Apr  
Abstract: Apoptosis-associated tyrosine kinase (AATYK) is a non-receptor type tyrosine kinase that is predominantly expressed in adult mouse brain. Although it is also expressed in developing brains, its expression pattern and physiological functions are unclear. In the present study, we analyzed expression profiles of AATYK in developing mouse brains and its functional role and subcellular localization in cultured cerebellar granule cells. Expression of AATYK mRNA and protein increased during postnatal brain development. Immunohistochemical analysis indicated that the protein was differentially expressed in postmitotic neurons within various brain areas including the olfactory bulb, cerebral cortex, hippocampus, thalamus, colliculus, cerebellum, and brain stem. Developmental increases in its expression were also observed in cultured cerebellar granule cells. AATYK protein was largely fractionated into the microsomal fraction and was immunocytochemically distributed in an ER-like meshwork of the granule cell soma, suggesting a possible association with the ER membrane. AATYK protein was also present in neurites. In immature granule cells, overexpression of wild-type AATYK promoted neurite outgrowth, whereas that of tyrosine kinase-defective mutant significantly inhibited it. These results suggest that, in addition to its role in cell death in mature neurons, AATYK has a unique role in promoting neurite extension through its tyrosine kinase activity in developing neurons.
Notes:
Yoko Shiraishi, Akihiro Mizutani, Shigeki Yuasa, Katsuhiko Mikoshiba, Teiichi Furuichi (2003)  Glutamate-induced declustering of post-synaptic adaptor protein Cupidin (Homer 2/vesl-2) in cultured cerebellar granule cells.   J Neurochem 87: 2. 364-376 Oct  
Abstract: Cupidin (Homer 2/vesl-2) is a post-synaptic adaptor protein that associates with glutamate receptor complexes and the actin cytoskeleton. We analyzed the developmental and activity-dependent localization of Cupidin in mouse cerebellar granule cells. Cupidin is predominantly localized to granule cell post-synapses connecting with mossy fiber terminals in developing post-natal cerebellum, but is diminished in adult cerebellum. In cultured granule cells 7 days in vitro, Cupidin was present as synaptic and extra-synaptic punctate clusters that largely co-localized with the actin-cytoskeletal binding partners F-actin and drebrin, as well as a post-synaptic scaffold protein PSD-95. Upon stimulation with glutamate, Cupidin clusters were rapidly dissociated without protein degradation, and by short-term but not sustained stimulation they were recovered after post-incubation without glutamate. The glutamate-induced declustering of Cupidin preceded that of F-actin and drebrin, was elicited by NMDA receptor-mediated Ca2+ influx, and was followed by a downstream pathway including MAPK/ERK and protein tyrosine kinase. Specific isoforms with post-translational modification were reduced depending on Ca2+-dependent protein phosphatase activity. In cultured hippocampal neurons, Homer family members Homer 1, Cupidin/Homer 2 and Homer 3 showed similar glutamate-induced declustering. We suggest that Cupidin acts as a mobile adaptor protein that changes the distribution states, clustered versus declustered, in response to synaptic activity.
Notes:
2002
Ivan Bosanac, Jean-René Alattia, Tapas K Mal, Jenny Chan, Susanna Talarico, Frances K Tong, Kit I Tong, Fumio Yoshikawa, Teiichi Furuichi, Miwako Iwai, Takayuki Michikawa, Katsuhiko Mikoshiba, Mitsuhiko Ikura (2002)  Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand.   Nature 420: 6916. 696-700 Dec  
Abstract: In a variety of cells, the Ca2+ signalling process is mediated by the endoplasmic-reticulum-membrane-associated Ca2+ release channel, inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R). Being ubiquitous and present in organisms ranging from humans to Caenorhabditis elegans, InsP3R has a vital role in the control of cellular and physiological processes as diverse as cell division, cell proliferation, apoptosis, fertilization, development, behaviour, memory and learning. Mouse type I InsP3R (InsP3R1), found in high abundance in cerebellar Purkinje cells, is a polypeptide with three major functionally distinct regions: the amino-terminal InsP3-binding region, the central modulatory region and the carboxy-terminal channel region. Here we present a 2.2-A crystal structure of the InsP3-binding core of mouse InsP3R1 in complex with InsP3. The asymmetric, boomerang-like structure consists of an N-terminal beta-trefoil domain and a C-terminal alpha-helical domain containing an 'armadillo repeat'-like fold. The cleft formed by the two domains exposes a cluster of arginine and lysine residues that coordinate the three phosphoryl groups of InsP3. Putative Ca2+-binding sites are identified in two separate locations within the InsP3-binding core.
Notes:
Hirohide Iwasaki, Kazuyoshi Chiba, Tsuyoshi Uchiyama, Fumio Yoshikawa, Fumiko Suzuki, Masako Ikeda, Teiichi Furuichi, Katsuhiko Mikoshiba (2002)  Molecular characterization of the starfish inositol 1,4,5-trisphosphate receptor and its role during oocyte maturation and fertilization.   J Biol Chem 277: 4. 2763-2772 Jan  
Abstract: The release of calcium ions (Ca(2+)) from their intracellular stores is essential for the fertilization of oocytes of various species. The calcium pools can be induced to release Ca(2+) via two main types of calcium channel receptor: the inositol 1,4,5-trisphosphate receptor (IP(3)R) and the ryanodine receptor. Starfish oocytes have often been used to study intracellular calcium mobilization during oocyte maturation and fertilization, but how the intracellular calcium channels contribute to intracellular calcium mobilization has never been understood fully, because these molecules have not been identified and no specific inhibitors of these channels have ever been found. In this study, we utilized a novel IP(3)R antagonist, the "IP(3) sponge," to investigate the role of IP(3) during fertilization of the starfish oocyte. The IP(3) sponge strongly and specifically competed with endogenous IP(3)R for binding to IP(3). By injecting IP(3) sponge into starfish oocyte, the increase in intracellular calcium and formation of the fertilization envelope were both dramatically blocked, although oocyte maturation was not blocked. To investigate the role of IP(3)R in the starfish oocyte more precisely, we cloned IP(3)R from the ovary of starfish, and the predicted amino acid sequence indicated that the starfish IP(3)R has 58-68% identity to mammalian IP(3)R types 1, 2, and 3. We then raised antibodies that recognize starfish IP(3)R, and use of the antibodies to perform immunoblot analysis revealed that the level of expression of IP(3)R remained unchanged throughout oocyte maturation. An immunocytochemical study, however, revealed that the distribution of starfish IP(3)R changes during oocyte maturation.
Notes:
Tsuyoshi Uchiyama, Fumio Yoshikawa, Akira Hishida, Teiichi Furuichi, Katsuhiko Mikoshiba (2002)  A novel recombinant hyperaffinity inositol 1,4,5-trisphosphate (IP(3)) absorbent traps IP(3), resulting in specific inhibition of IP(3)-mediated calcium signaling.   J Biol Chem 277: 10. 8106-8113 Mar  
Abstract: We have developed a novel recombinant hyperaffinity inositol 1,4,5-trisphosphate (IP(3)) absorbent, called the "IP(3) sponge," which we constructed on the basis of the ligand-binding site of the mouse type 1 IP(3) receptor (IP(3)R1). The IP(3) sponge exhibited approximately 1000-fold higher affinity for IP(3) than the parental IP(3)R1 and specifically competed with the endogenous IP(3)R for binding to IP(3). Trapping IP(3) with the IP(3) sponge inhibited IP(3)-induced Ca(2+) release (IICR) from cerebellar microsomes in a dose-dependent manner. The IP(3) sponge expressed in HEK293 cells also inhibited IICR in response to stimulation with carbachol or ATP. Its inhibitory effects were dependent upon the level of its expression over the increased IP(3) contents. Moreover, the IP(3) sponge significantly reduced the carbachol-induced phosphorylation of cAMP-response element-binding protein in HEK293 cells, indicating that the activation of cAMP-response element-binding protein by Ca(2+)-dependent phosphorylation may be partly attributable to IICR.
Notes:
2001
Y Kagami, T Furuichi (2001)  Investigation of differentially expressed genes during the development of mouse cerebellum.   Brain Res Gene Expr Patterns 1: 1. 39-59 Aug  
Abstract: Before the discovery of DNA microarray and DNA chip technology, the expression of only a small number of genes could be analyzed at a time. Currently, such technology allows us the simultaneous analysis of a large number of genes to systematically monitor their expression patterns that may be associated with various biological phenomena. We utilized the Affymetrix GeneChip Mu11K to analyze the gene expression profile in developing mouse cerebellum to assist in the understanding of the genetic basis of cerebellar development in mice. Our analysis showed 81.6% (10,321/12,654) of the genes represented on the GeneChip were expressed in the postnatal cerebellum, and among those, 8.7% (897/10,321) were differentially expressed with more than a two-fold change in their maximum and minimum expression levels during the developmental time course. Further analysis of the differentially expressed genes that were clustered in terms of their expression patterns and the function of their encoded products revealed an aspect of the genetic foundation that lies beneath the cellular events and neural network formation that takes place during the development of the mouse cerebellum.
Notes:
1999
F Yoshikawa, T Uchiyama, H Iwasaki, C Tomomori-Satoh, T Tanaka, T Furuichi, K Mikoshiba (1999)  High efficient expression of the functional ligand binding site of the inositol 1,4,5-triphosphate receptor in Escherichia coli.   Biochem Biophys Res Commun 257: 3. 792-797 Apr  
Abstract: Type 1 inositol 1,4,5-trisphosphate receptor (IP3R1), an inositol 1, 4,5-trisphosphate (IP3)-gated Ca2+ release channel, binds IP3 within the N-terminal ligand-binding region. Here we report an improved Escherichia coli expression system in which large amounts of the IP3 binding sites could be efficiently produced as soluble active proteins. We have found that the structures of IP3 binding constructs expressed in E. coli significantly affect their production as soluble protein. Residues 1-604 (T604), which contain the putative protein folding units, yielded about 4.6% of the total soluble fraction. As a result, soluble active T604 would be 19 mg per liter of culture. The affinity for IP3 of T604 (Kd = 45 nM) is comparable to that of the native IP3R1, whereas that of an R441Q mutant is much higher (8.1 nM). This system should provide an invaluable and powerful means to unveil the molecular recognition of IP3R1 for IP3.
Notes:
T Natsume, J Hirota, F Yoshikawa, T Furuichi, K Mikoshiba (1999)  Real time analysis of interaction between inositol 1,4, 5-trisphosphate receptor type I and its ligand.   Biochem Biophys Res Commun 260: 2. 527-533 Jul  
Abstract: Inositol 1,4,5-trisphosphate (IP(3)) is an important second messenger that releases intracellular Ca(2+) by binding to its specific receptor, inositol 1,4,5-trisphosphate receptor (IP(3)R), in a wide range of cellular processes. We report here large-scale expression and purification of N-terminal 604 amino acids of IP(3)R type 1 (T604) expressed in E. coli, which contains the ligand binding domain. Surface plasmon resonance biosensor studies showed that purified T604 could bind to its ligands with binding specificity identical to that of full-length native IP(3)R type 1. Kinetic parameters of T604 for IP(3) consisted of a fast association rate constant (K(ass) = 1.2 x 10(6) M(-1) s(-1)) and a rapid dissociation rate constant (k(diss) = 1 s(-1)), and the equilibrium dissociation constant was determined to be 336 nM, at 150 mM NaCl and pH 7.4. However, association and dissociation patterns depended on the pH level and ionic strength. These results pave the way toward detail analysis of structure-function analysis of the ligand binding domain of IP(3)R type 1 for its ligands.
Notes:
T Michikawa, J Hirota, S Kawano, M Hiraoka, M Yamada, T Furuichi, K Mikoshiba (1999)  Calmodulin mediates calcium-dependent inactivation of the cerebellar type 1 inositol 1,4,5-trisphosphate receptor.   Neuron 23: 4. 799-808 Aug  
Abstract: The dependency of purified mouse cerebellar type 1 inositol 1,4,5-trisphosphate receptor (IP3R1)/Ca2+ channel function on cytoplasmic Ca2+ was examined. In contrast to the channels in crude systems, the purified IP3R1 reconstituted into planar lipid bilayers did not show the bell-shaped dependence on Ca2+. It was activated with increasing Ca2+ sublinearly without inhibition even up to 200 microM. The addition of calmodulin to the cytoplasmic side inhibited the channel at high Ca2+ concentrations. Calmodulin antagonists reversed the Ca2+-dependent inactivation of the native channels in cerebellar microsomes. These results indicate that the bell-shaped dependence on cytoplasmic Ca2+ is not an intrinsic property of the IP3R1, and the Ca2+-dependent inactivation is directly mediated by calmodulin.
Notes:
Y Shiraishi, A Mizutani, H Bito, K Fujisawa, S Narumiya, K Mikoshiba, T Furuichi (1999)  Cupidin, an isoform of Homer/Vesl, interacts with the actin cytoskeleton and activated rho family small GTPases and is expressed in developing mouse cerebellar granule cells.   J Neurosci 19: 19. 8389-8400 Oct  
Abstract: A developmentally regulated Homer/Vesl isoform, Cupidin (Homer 2a/Vesl-2Delta11), was isolated from postnatal mouse cerebellum using a fluorescent differential display strategy. The strongest expression of Cupidin was detected in the cerebellar granule cells at approximately postnatal day 7. Cupidin was enriched in the postsynaptic density fraction, and its immunoreactivity was concentrated at glomeruli of the inner granular layer when active synaptogenesis occurred. Cupidin protein could be divided into two functional domains: the N-terminal portion, which was highly conserved among Homer/Vesl family proteins, and the C-terminal portion, which consisted of a putative coiled-coil structure, including several leucine zipper motifs. The N-terminal fragment of Cupidin, which was able to associate with metabotropic glutamate receptor 1 (mGluR1), also interacted with F-actin in vitro. In keeping with this, F-actin immunocytochemically colocalized with Cupidin in cultured cerebellar granule cells, and a Cupidin-mGluR1-actin complex was immunoprecipitated from crude cerebellar lysates using an anti-Cupidin antibody. On the other hand, the C-terminal portion of Cupidin bound to Cdc42, a member of Rho family small GTPases, in a GTP-dependent manner in vitro, and Cupidin functionally interacted with activated-Cdc42 in a heterologous expression system. Together, our findings indicate that Cupidin may serve as a postsynaptic scaffold protein that links mGluR signaling with actin cytoskeleton and Rho family proteins, perhaps during the dynamic phase of morphological changes that occur during synapse formation in cerebellar granule cells.
Notes:
J Hirota, T Michikawa, T Natsume, T Furuichi, K Mikoshiba (1999)  Calmodulin inhibits inositol 1,4,5-trisphosphate-induced calcium release through the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1.   FEBS Lett 456: 2. 322-326 Aug  
Abstract: Our previous studies have demonstrated that calmodulin binds to IP3R type I (IP3R1) in a Ca2+ dependent manner, which suggests that calmodulin regulates the IP3R1 channel. In the present study, we investigated real-time kinetics of interactions between calmodulin and IP3R1 as well as effects of calmodulin on IP3-induced Ca2+ release by purified and reconstituted IP3R1. Kinetic analysis revealed that calmodulin binds to IP3R1 in a Ca2+ dependent manner and that both association and dissociation phase consist of two components with time constants of k(a) = 4.46 x 10(2) and > 10(4) M(-1) s(-1) k(d) = 1.44 x 10(-2) and 1.17 x 10(-1) s(-1). The apparent dissociation constant was calculated to be 27.3 microM. The IP3-induced Ca2+ release through the purified and reconstituted IP3R1 was inhibited by Ca2+/calmodulin, in a dose dependent manner. We interpret our findings to mean that calmodulin binds to IP3R1 in a Ca2+ dependent manner to exert inhibitory effect on IP3R channel activity. This event may be one of the mechanisms governing the negative feedback regulation of IP3-induced Ca2+ release by Ca2+.
Notes:
Y Konishi, N Ohkawa, Y Makino, H Ohkubo, R Kageyama, T Furuichi, K Mikoshiba, T Tamura (1999)  Transcriptional regulation of mouse type 1 inositol 1,4,5-trisphosphate receptor gene by NeuroD-related factor.   J Neurochem 72: 4. 1717-1724 Apr  
Abstract: The type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) is a Ca2+ channel protein that is expressed abundantly in the CNS, such as in the cerebellar Purkinje cells and hippocampus. We previously demonstrated that the box-I element, which is located -334 relative to the transcription initiation site of the mouse IP3R1 gene and includes an E-box consensus sequence, is involved in the up-regulation of such IP3R1 gene expression. Furthermore, the previous study also indicated that some CNS-related basic helix-loop-helix (bHLH) factors bind to the box-I and activate IP3R1 gene expression. In this study, we demonstrated that one of the CNS-related bHLH factors, neuronal differentiation factor (NeuroD)-related factor (NDRF), specifically bound to the box-I sequence with a ubiquitously expressed bHLH protein, E47, and activated IP3R1 gene expression. In situ hybridization of adult mouse brain revealed that IP3R1 and NDRF mRNA were co-expressed in many subsets of neurons, highly in Purkinje cells and hippocampus and moderately in cerebral cortex, olfactory bulb, and caudate putamen. Furthermore, the spatiotemporal expression patterns of these two genes resembled one another throughout postnatal development of the mouse CNS. From these results, we suggest that NDRF is involved in the tissue-specific regulation of IP3R1 gene expression in the CNS.
Notes:
H A Baylis, T Furuichi, F Yoshikawa, K Mikoshiba, D B Sattelle (1999)  Inositol 1,4,5-trisphosphate receptors are strongly expressed in the nervous system, pharynx, intestine, gonad and excretory cell of Caenorhabditis elegans and are encoded by a single gene (itr-1).   J Mol Biol 294: 2. 467-476 Nov  
Abstract: Inositol 1,4,5-trisphosphate (InsP3) activates receptors (InsP3Rs) that mediate intracellular Ca(2+ )release, thereby modulating intracellular calcium signals and regulating important aspects of cellular physiology and gene expression. To further our understanding of InsP3Rs we have characterised InsP3Rs and the InsP3R gene, itr-1, from the model organism Caenorhabditis elegans. cDNAs encoding InsP3Rs were cloned enabling us to: (a) identify three putative transcription start sites that result in alternative mRNA 5' ends: (b) detect alternative splicing at three sites and: (c) determine the full genomic organisation of the itr-1 gene. The InsP3R protein (ITR-1) is approximately 42 % identical with known InsP3Rs and possesses conserved structural features. When the putative InsP3 binding domain was expressed in Escherichia coli, specific binding of InsP3 was detected. Using antibodies against ITR-1 we detected a protein of 220 kDa in C. elegans membranes. These antibodies and itr-1::GFP (green fluorescent protein) reporter constructs were used to determine the expression pattern of itr-1 in C. elegans. Strong expression was observed in the intestine, pharynx, nerve ring, excretory cell and gonad. These results demonstrate the high degree of structural and functional conservation of InsP3Rs from nematodes to mammals and the utility of C. elegans as a system for studies on InsP3R mediated signalling.
Notes:
F Yoshikawa, H Iwasaki, T Michikawa, T Furuichi, K Mikoshiba (1999)  Trypsinized cerebellar inositol 1,4,5-trisphosphate receptor. Structural and functional coupling of cleaved ligand binding and channel domains.   J Biol Chem 274: 1. 316-327 Jan  
Abstract: The type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) is a tetrameric intracellular inositol 1,4,5-trisphosphate (IP3)-gated Ca2+ release channel (calculated molecular mass = approximately 313 kDa/subunit). We studied structural and functional coupling in this protein complex by limited (controlled) trypsinization of membrane fractions from mouse cerebellum, the predominant site for IP3R1. Mouse IP3R1 (mIP3R1) was trypsinized into five major fragments (I-V) that were positioned on the entire mIP3R1 sequence by immuno-probing with 11 site-specific antibodies and by micro-sequencing of the N termini. Four fragments I-IV were derived from the N-terminal cytoplasmic region where the IP3-binding region extended over two fragments I (40/37 kDa) and II (64 kDa). The C-terminal fragment V (91 kDa) included the membrane-spanning channel region. All five fragments were pelleted by centrifugation as were membrane proteins. Furthermore, after solubilizing with 1% Triton X-100, all were co-immunoprecipitated with the C terminus-specific monoclonal antibody that recognized only the fragment V. These data suggested that the native mIP3R1-channel is an assembly of four subunits, each of which is constituted by non-covalent interactions of five major, well folded structural components I-V that are not susceptible to attack by mild trypsinolysis. Ca2+ release experiments further revealed that even the completely fragmented mIP3R1 retained significant IP3-induced Ca2+ release activity. These data suggest that structural coupling among five split components conducts functional coupling for IP3-induced Ca2+ release, despite the loss of peptide linkages. We propose structural-functional coupling in the mIP3R1, that is neighboring coupling between components I and II for IP3 binding and long-distant coupling between the IP3 binding region and the channel region (component V) beyond trypsinized gaps for ligand gating.
Notes:
F Yoshikawa, H Iwasaki, T Michikawa, T Furuichi, K Mikoshiba (1999)  Cooperative formation of the ligand-binding site of the inositol 1,4, 5-trisphosphate receptor by two separable domains.   J Biol Chem 274: 1. 328-334 Jan  
Abstract: Limited trypsin digestion of mouse cerebellar membrane fractions leads to fragmentation of the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) into five major components (Yoshikawa, F., Iwasaki, H., Michikawa, T., Furuichi, T., and Mikoshiba, K. (1999) J. Biol. Chem. 274, 316-327). Here we report that trypsin-fragmented mouse IP3R1 (mIP3R1) retains significant inositol 1,4,5-trisphosphate (IP3) binding activity that is comparable to the intact receptor in affinity, capacity, and specificity. This is despite the fact that the IP3-binding core (residues 226-578), which is close to the minimum for high affinity binding, is completely split into two tryptic fragments at the Arg-343 and/or Arg-345, around the center of the core. Furthermore, we have examined whether binding activity could be complemented in vitro by mixing two distinct glutathione S-transferase (GST) fusion proteins, which were respectively composed of residues 1-343 and 341-604, almost corresponding to two split binding components, and separately expressed in Escherichia coli. The GST-fused residues 1-343 (GN) showed no binding affinity for IP3, whereas the GST-fused residues 341-604 (GC) displayed weak but definite activity with an affinity >100-fold lower than that of the native receptor. Upon mixing of both GN and GC, a high affinity site comparable to the native site appeared. We suggest that the IP3-binding pocket consists of two non-covalently but tightly associated structural domains each of which has a discrete function: the C-terminal domain alone has low affinity for IP3, whereas the N-terminal one alone is incapable of binding but is capable of potentiating binding affinity.
Notes:
C C Zhu, T Furuichi, K Mikoshiba, R J Wojcikiewicz (1999)  Inositol 1,4,5-trisphosphate receptor down-regulation is activated directly by inositol 1,4,5-trisphosphate binding. Studies with binding-defective mutant receptors.   J Biol Chem 274: 6. 3476-3484 Feb  
Abstract: Activation of certain phosphoinositidase C-linked cell surface receptors is known to cause an acceleration of the proteolysis of inositol 1,4,5-trisphosphate (InsP3) receptors and, thus, lead to InsP3 receptor down-regulation. To gain insight into this process, we examined whether or not InsP3 receptor degradation is a direct consequence of InsP3 binding by analyzing the down-regulation of exogenous wild-type and binding-defective mutant InsP3 receptors expressed in SH-SY5Y human neuroblastoma cells. Stimulation of these cells with carbachol showed that wild-type exogenous receptors could be down-regulated but that the binding-defective mutant exogenous receptors were not. Thus, InsP3 binding appears to mediate down-regulation. To validate this conclusion, a comprehensive analysis of the effects of the exogenous receptors was undertaken. This showed that exogenous receptors (i) are localized appropriately within the cell, (ii) enhance InsP3-induced Ca2+ release in permeabilized cells, presumably by increasing the number of InsP3-sensitive Ca2+ channels, (iii) have minimal effects on Ca2+ mobilization and InsP3 formation in intact cells, (iv) form heteromers with endogenous receptors, and (v) do not alter the down-regulation of endogenous receptors. In total, these data show that the introduction of exogenous receptors into SH-SY5Y cells does not compromise intracellular signaling or the down-regulatory process. We can thus conclude that InsP3 binding directly activates InsP3 receptor degradation. Because InsP3 binding induces a conformational change in the InsP3 receptor, these data suggest that this change provides the signal for accelerated proteolysis.
Notes:
J Hirota, T Furuichi, K Mikoshiba (1999)  Inositol 1,4,5-trisphosphate receptor type 1 is a substrate for caspase-3 and is cleaved during apoptosis in a caspase-3-dependent manner.   J Biol Chem 274: 48. 34433-34437 Nov  
Abstract: The inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R), an IP(3)-gated Ca(2+) channel located on intracellular Ca(2+) stores, modulates intracellular Ca(2+) signaling. During apoptosis of the human T-cell line, Jurkat cells, as induced by staurosporine or Fas ligation, IP(3)R type 1 (IP(3)R1) was found to be cleaved. IP(3)R1 degradation during apoptosis was inhibited by pretreatment of Jurkat cells with the caspase-3 (-like protease) inhibitor, Ac-DEVD-CHO, and the caspases inhibitor, z-VAD-CH(2)DCB but not by the caspase-1 (-like protease) inhibitor, Ac-YVAD-CHO, suggesting that IP(3)R1 was cleaved by a caspase-3 (-like) protease. The recombinant caspase-3 cleaved IP(3)R1 in vitro to produce a fragmentation pattern consistent with that seen in Jurkat cells undergoing apoptosis. N-terminal amino acid sequencing revealed that the major cleavage site is (1888)DEVD*(1892)R (mouse IP(3)R1), which involves consensus sequence for caspase-3 cleavage (DEVD). To determine whether IP(3)R1 is cleaved by caspase-3 or is proteolyzed in its absence by other caspases, we examined the cleavage of IP(3)R1 during apoptosis in the MCF-7 breast carcinoma cell line, which has genetically lost caspase-3. Tumor necrosis factor-alpha- or staurosporine-induced apoptosis in caspase-3-deficient MCF-7 cells failed to demonstrate cleavage of IP(3)R1. In contrast, MCF-7/Casp-3 cells stably expressing caspase-3 showed IP(3)R1 degradation upon apoptotic stimuli. Therefore IP(3)R1 is a newly identified caspase-3 substrate, and caspase-3 is essential for the cleavage of IP(3)R1 during apoptosis. This cleavage resulted in a decrease in the channel activity as IP(3)R1 was digested, indicating that caspase-3 inactivates IP(3)R1 channel functions.
Notes:
F Mitsuyama, T Sawai, E Carafoli, T Furuichi, K Mikoshiba (1999)  Microinjection of Ca2+ store-enriched microsome fractions to dividing newt eggs induces extra-cleavage furrows via inositol 1,4,5-trisphosphate-induced Ca2+ release.   Dev Biol 214: 1. 160-167 Oct  
Abstract: The cleavage signal transferred to the future cleavage cortex during anaphase has been proposed as "cleavage stimulus," but no signal has proved to induce cleavage furrows. The local Ca2+ transient along the cleavage furrow has been reported, but the Ca2+ source has remained unknown. To address these questions, we studied functions of Ca2+ stores in dividing newt eggs and found that microinjection of the Ca2+ store-enriched microsome fraction to the dividing newt egg induced a local extra-cleavage furrow at the injection site in 64-67% of the injected newt eggs while coinjection with inositol 1,4, 5-trisphosphate receptor (IP(3)R) antagonists heparin or anti-type 1-IP(3)R antibody clearly suppressed this induction (5 and 11% in induction rates, respectively). Injection of cerebellar microsomes from the type 1-IP(3)R-deficient mice induced extracleavage furrows albeit at a low rate (19%). Our observations strongly suggest that Ca2+ stores with IP(3)R induce and position a cleavage furrow via IP(3)-induced Ca2+ release (IICR) as Ca(2+)-releasing machinery and putative cleavage stimulus itself.
Notes:
1998
J Hirota, M Baba, M Matsumoto, T Furuichi, K Takatsu, K Mikoshiba (1998)  T-cell-receptor signalling in inositol 1,4,5-trisphosphate receptor (IP3R) type-1-deficient mice: is IP3R type 1 essential for T-cell-receptor signalling?   Biochem J 333 ( Pt 3): 615-619 Aug  
Abstract: Stimulation of T-cells via the T-cell receptor (TCR) complex is accompanied by an increase in intracellular Ca2+ concentration ([Ca2+]i). Recently, it was reported that a stable transformant of the human T-cell line, Jurkat, expressing an antisense cDNA construct of inositol 1,4,5-trisphosphate receptor (IP3R) type 1 (IP3R1), failed to demonstrate increased [Ca2+]i or interleukin-2 production after TCR stimulation and was also resistant to apoptotic stimuli. This cell line lacked IP3R1 expression, but expressed the type-2 and -3 receptors, IP3R2 and IP3R3 respectively [Jayaraman, Ondriasova, Ondrias, Harnick and Marks (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 6007-6011, and Jayaraman and Marks (1997) Mol. Cell. Biol. 17, 3005-3012]. The authors concluded that IP3R1 is essential for TCR signalling and suggested that Ca2+ release via IP3R1 is a critical mediator of apoptosis. To establish whether a loss of IP3R1 function in T-cells occurred in vivo and in vitro, we investigated Ca2+ signalling after TCR stimulation and the properties of T-cells using IP3R1-deficient (IP3R1-/-) mice. As IP3R1-/- mice die at weaning, we transplanted bone marrow cells of IP3R1-/- mice into irradiated wild-type mice. Western blot analysis showed that the recipient IP3R1-containing (IP3R1+/+) lymphocytes were replaced by the donor IP3R1-/- lymphocytes after transplantation and that expression of IP3R2 and IP3R3 was unaltered. In contrast with the previous reports, T-cells lacking IP3R1 were able to mobilize Ca2+ from intracellular Ca2+ stores after stimulation via the TCR. We observed no significant differences between IP3R1+/+ and IP3R1-/- T-cells in terms of the number of thymocytes and splenocytes, the proportion of the T-cell phenotype, proliferative response to anti-CD3 monoclonal antibody (mAb) stimulation and cell viability. Therefore IP3R1 is not essential for T-cell development and function.
Notes:
M Yamamoto-Hino, A Miyawaki, A Segawa, E Adachi, S Yamashina, T Fujimoto, T Sugiyama, T Furuichi, M Hasegawa, K Mikoshiba (1998)  Apical vesicles bearing inositol 1,4,5-trisphosphate receptors in the Ca2+ initiation site of ductal epithelium of submandibular gland.   J Cell Biol 141: 1. 135-142 Apr  
Abstract: In polarized epithelial cells, agonists trigger Ca2+ waves and oscillations. These patterns may be caused by the compartmentalization of inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pools into specific regions. We have investigated the relationship between the distribution of IP3 receptors (IP3Rs) and the spatiotemporal pattern of Ca2+ signaling in the duct cells of the rat submandibular gland (SMG). Using immunofluorescence, although labeling was somewhat heterogeneous, the IP3Rs were colocalized to the apical pole of the duct cells. Immunoelectron microscopy identified small apical vesicles bearing IP3R2 in some types of duct cells. Real-time confocal imaging of intact ducts demonstrated that, after carbachol stimulation, an initial Ca2+ spike occurred in the apical region. Subsequently, repetitive Ca2+ spikes spread from the apical to the middle cytoplasm. These apical Ca2+ initiation sites were found only in some "pioneer cells," rather than in all duct cells. We performed both Ca2+ imaging and immunofluorescence on the same ducts and detected the strongest immunosignals of IP3R2 in the Ca2+ initiation sites of the pioneer cells. The subcellular localization and expression level of IP3Rs correlated strongly with the spatiotemporal nature of the intracellular Ca2+ signal and distinct Ca2+ responses among the rat SMG duct cells.
Notes:
T Monkawa, M Hayashi, A Miyawaki, T Sugiyama, M Yamamoto-Hino, M Hasegawa, T Furuichi, K Mikoshiba, T Saruta (1998)  Localization of inositol 1,4,5-trisphosphate receptors in the rat kidney.   Kidney Int 53: 2. 296-301 Feb  
Abstract: Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) serve as intracellular calcium release channels involved in signal transduction of various hormones in the kidney. Molecular cloning studies have shown that there are three types of IP3R, designated type 1, type 2, and type 3. To characterize their localizations in the rat kidney, we employed immunohistochemical studies using type-specific monoclonal antibodies that were raised against the 15 C-terminal amino acids of each type of IP3R. Type 1 was detected in glomerular mesangial cells and vascular smooth muscle cells. Type 2 was expressed exclusively in intercalated cells of collecting ducts from the cortex to the inner medulla. Type 3 was expressed in vascular smooth muscle cells, glomerular mesangial cells, and some cells of cortical collecting ducts, probably principal cells. As to the subcellular distribution, type 1 and type 2 showed a homogenous distribution in the cytoplasm, whereas type 3 was present mainly in the basolateral portion of the cytoplasm. These results indicate that IP3R isoforms were expressed in a cell-specific manner. The heterogeneous subcellular localizations among the IP3R types suggests compartmentalization of distinct IP3-sensitive Ca2+ pools.
Notes:
1997
H Yoneshima, A Miyawaki, T Michikawa, T Furuichi, K Mikoshiba (1997)  Ca2+ differentially regulates the ligand-affinity states of type 1 and type 3 inositol 1,4,5-trisphosphate receptors.   Biochem J 322 ( Pt 2): 591-596 Mar  
Abstract: To elucidate the functional difference between type 1 and type 3 Ins(1,4,5)P3 receptors [Ins(1,4,5)P3R1 and Ins(1,4,5)P3R3 respectively] we studied the effect of Ca2+ on the ligand-binding properties of both Ins(1,4,5)P3R types. We expressed full-length human Ins(1,4,5)P3R1 and Ins(1,4,5)P3R3 from cDNA species in insect ovary Sf9 cells, and the membrane fractions were used for Ins(1,4,5)P3-binding assays. The binding of Ins(1,4,5)P3 to Ins(1,4,5)P3R1 and Ins(1,4,5)P3R3 was differentially regulated by Ca2+. With increasing concentrations of free Ca2+ ([Ca2+]), Ins(1,4,5)P3 binding to Ins(1,4,5)P2R1 decreased, whereas that to Ins(1,4,5)P3R3 increased. Alteration of Ins(1,4,5)P3 binding to Ins(1,4,5)P3R1 was observed at [Ca2+] ranging from less than 1 nM to more than 10 microM. The EC50 of Ins(1,4,5)P3 binding was 100 nM Ca2+ for Ins(1,4,5)P3R1. In contrast, Ins(1,4,5)P3 binding to Ins(1,4,5)P3R3 was changed at high [Ca2+] with an EC50 value of 872 nM, and steeply between 100 nM and 10 microM. These Ca2+-dependent alterations of Ins(1,4,5)P3 binding to both Ins(1,4,5)P3R types were reversible. Scatchard analyses revealed that Ca2+ changed the affinity of both Ins(1,4,5)P3R types but not the total number of Ins(1,4,5)P3-binding sites. The Kd values of Ins(1,4,5)P3R1 for Ins(1,4,5)P3 were 78.5 nM with 3 nM free Ca2+, and 312 nM with 1.4 microM free Ca2+. In contrast, Ins(1,4,5)P3R3 exhibited an affinity for Ins(1,4,5)P3 with Kd values of 116 nM with 3 nM free Ca2+, and 62.2 nM with 1.4 microM free Ca2+. These results indicate that (1) both Ins(1,4,5)P3R1 and Ins(1,4,5)P3R3 have at least two affinity states, (2) Ca2+ regulates interconversions between these states, and (3) Ca2+ regulates the binding of Ins(1,4,5)P3 to Ins(1,4,5)P3R1 and Ins(1,4,5)P3R3 in opposite manners.
Notes:
K Morikawa, T Ohbayashi, M Nakagawa, Y Konishi, Y Makino, M Yamada, A Miyawaki, T Furuichi, K Mikoshiba, T Tamura (1997)  Transcription initiation sites and promoter structure of the mouse type 2 inositol 1,4,5-trisphosphate receptor gene.   Gene 196: 1-2. 181-185 Sep  
Abstract: Transcription initiation sites and the promoter sequence of the ubiquitously expressed mouse type 2 inositol 1,4,5-trisphosphate receptor (IP3R2) gene were determined. In contrast to the nervous system-enriched IP3R1, the IP3R2 gene had multiple (seven major) transcription initiation sites located 334 to 269 bp upstream from the first ATG codon. Transient luciferase assay revealed promoter activity of the IP3R2 sequence upstream from the transcription initiation sites. The IP3R2 promoter was GC-rich and had no conventional TATA box, but had a GC box in the proximal promoter. Multiple transcription start sites were flanked by CpG islands, and various cis elements were located in the promoter. These structural features are considered to be responsible for a profile of IP3R2 gene expression.
Notes:
L G Sayers, A Miyawaki, A Muto, H Takeshita, A Yamamoto, T Michikawa, T Furuichi, K Mikoshiba (1997)  Intracellular targeting and homotetramer formation of a truncated inositol 1,4,5-trisphosphate receptor-green fluorescent protein chimera in Xenopus laevis oocytes: evidence for the involvement of the transmembrane spanning domain in endoplasmic reticulum targeting and homotetramer complex formation.   Biochem J 323 ( Pt 1): 273-280 Apr  
Abstract: In an attempt to define structural regions of the type I inositol 1, 4,5-trisphosphate [Ins(1,4,5)P3] receptor [Ins(1,4,5)P3R] involved in its intracellular targeting to the endoplasmic reticulum (ER), we have employed the use of green fluorescent protein (GFP) to monitor the localization of a truncated Ins(1,4,5)P3R mutant containing just the putative transmembrane spanning domain and the C-terminal cytoplasmic domain [amino acids 2216-2749; termed inositol trisphosphate receptor(ES)]. We expressed a chimeric GFP-Ins(1,4, 5)P3R(ES) fusion protein in Xenopus laevis oocytes, and used fluorescence confocal microscopy to monitor its intracellular localization. Fluorescence confocal microscopy data showed an intense fluorescence in the perinuclear region and in a reticular-network under the animal pole of the oocyte, consistent with the targeting of expressed GFP-Ins(1,4,5)P3R(ES) to perinuclear ER and ER under the animal pole. These findings are consistent with the intracellular localization of the endogenous Xenopus Ins(1,4, 5)P3R shown previously. Furthermore, electron microscopy data indicate that expressed GFP-Ins(1,4,5)P3R(ES) is in fact targeted to the ER. Sodium carbonate extraction of microsomal membranes and cross-linking experiments indicate that the expressed chimeric protein is in fact membrane anchored and able to form a homotetrameric complex. Our data provides evidence that Ins(1,4, 5)P3R(ES) constitutes the membrane spanning domain of the Ins(1,4, 5)P3R and is able to mediate homotetramer formation, without the need for the large N-terminal cytoplasmic domain. Furthermore, the localization of GFP-Ins(1,4,5)P3R(ES) on the ER indicates that an ER retention/targeting signal is contained within the transmembrane spanning domain of the inositol trisphosphate receptor.
Notes:
Y Konishi, Y Kobayashi, T Kishimoto, Y Makino, A Miyawaki, T Furuichi, H Okano, K Mikoshiba, T Tamura (1997)  Demonstration of an E-box and its CNS-related binding factors for transcriptional regulation of the mouse type 1 inositol 1,4,5-trisphosphate receptor gene.   J Neurochem 69: 2. 476-484 Aug  
Abstract: The type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) is expressed abundantly in the CNS, such as in cerebellar Purkinje cells and the hippocampus. We established a tissue-specific cell-free transcription system and studied regulatory properties of the 5' upstream region of the IP3R1 gene by use of this system. Deletion analyses of the promoter revealed several cis elements that function significantly in brain nuclear extracts. Among those elements, sequences from -398 to -295 showed the most predominant cerebellum-specific positive function. Footprint analyses demonstrated a factor-binding region from -334 to -318, termed box-I, that contained an E-box consensus sequence. Electrophoretic mobility shift assay revealed CNS-related basic helix-loop-helix proteins for the box-I. Mutational studies using the function assay and competitive electrophoretic mobility shift assays demonstrated a good correlation between the box-I-binding factors and the activated transcription. Box-I-binding factors were present abundantly in adult mouse CNS, whereas their existence was restricted in embryonic and nonneural tissues. Transient chloramphenicol acetyltransferase assay for the IP3R1 promoter revealed the requirement of box-I in Neuro2a neuroblastoma cells. In the postnatal CNS, multiple basic helix-loop-helix factors are expressed abundantly, some of which are suggested to activate IP3R1 gene expression in the mammalian CNS.
Notes:
1996
F Yoshikawa, M Morita, T Monkawa, T Michikawa, T Furuichi, K Mikoshiba (1996)  Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate receptor.   J Biol Chem 271: 30. 18277-18284 Jul  
Abstract: To define the structural determinants for inositol 1,4, 5-trisphosphate (IP3) binding of the type 1 inositol 1,4, 5-trisphosphate receptor (IP3R1), we developed a means of expressing the N-terminal 734 amino acids of IP3R1 (T734), which contain the IP3 binding region, in Escherichia coli. The T734 protein expressed in E. coli exhibited a similar binding specificity and affinity for IP3 as the native IP3R from mouse cerebellum. Deletion mutagenesis, in which T734 was serially deleted from the N terminus up to residue 215, markedly reduced IP3 binding activity. However, when deleted a little more toward the C terminus (to residues 220, 223, and 225), the binding activity was retrieved. Further N-terminal deletions over the first 228 amino acids completely abolished it again. C-terminal deletions up to residue 579 did not affect the binding activity, whereas those up to residue 568 completely abolished it. In addition, the expressed 356-amino acid polypeptide (residues 224-579) exhibited specific binding activity. Taken together, residues 226-578 were sufficient and close enough to the minimum region for the specific IP3 binding, and thus formed an IP3 binding "core." Site-directed mutagenesis was performed on 41 basic Arg and Lys residues within the N-terminal 650 amino acids of T734. We showed that single amino acid substitutions for 10 residues, which were widely distributed within the binding core and conserved among all members of the IP3R family, significantly reduced the binding activity. Among them, three (Arg-265, Lys-508, and Arg-511) were critical for the specific binding, and Arg-568 was implicated in the binding specificity for various inositol phosphates. We suggest that some of these 10 residues form a basic pocket that interacts with the negatively charged phosphate groups of IP3.
Notes:
S S el-Daher, M Eigenthaler, U Walter, T Furuichi, A Miyawaki, K Mikoshiba, V V Kakkar, K S Authi (1996)  Distribution and activation of cAMP- and cGMP-dependent protein kinases in highly purified human platelet plasma and intracellular membranes.   Thromb Haemost 76: 6. 1063-1071 Dec  
Abstract: Previously cAMP- and cGMP-dependent protein kinases (cAMP-PK, cGMP-PK) have been found predominantly associated with the particulate fraction in human platelets. We now report the distribution and activation of cAMP-PK and cGMP-PK in highly purified fractions of human platelet plasma (PM) and intracellular membranes (IM) prepared using high voltage free flow electrophoresis. Two non-hydrolysable analogues of cAMP and cGMP namely Sp-5,6-DCI-cBiMPS and 8-p-CPT-cGMP have been used to activate cAMP-PK and cGMP-PK respectively. Addition of either agonist with [gamma 32P]ATP stimulated the endogenous activity of cAMP-PK or cGMP-PK in PM but not in IM. With PM Sp-5,6-DCI-cBiMPS stimulated the phosphorylation of protein substrates of Mr 16, 22, 24, 46-50, 66, 90, 160 and 250 kDa. A specific peptide inhibitor of cAMP-PK inhibited the phosphorylation of all of the substrates by Sp-5,6-DCI-cBiMPS. 8-pCPT-cGMP also induced the phosphorylation of a number of substrates particularly 16, 22, 46-50, 90 and 250 kDa proteins. Inclusion of the cAMP-PK inhibitor peptide totally blocked the phosphorylation of the 16 and 22 kDa proteins, partially inhibited phosphorylation of 46-50 and 90 kDa proteins and had no effect on the 250 kDa protein indicating the 46-50, 90 and 250 kDa proteins were also cGMP-PK substrates. Western blotting with antibodies to cGMP-PK and the catalytic subunit of cAMP-PK revealed the presence of the kinases to be exclusively associated with PM with no detection in IM. The presence of cAMP-PK substrates in IM was investigated by exogenous addition of catalytic subunit of cAMP-PK. Phosphoproteins of Mr 16, 22, 27, 30, 45, 75, 116 and 250 kDa were detected. A range of antibodies to cAMP-PK substrates were used to identify and localise the substrates. These antibodies revealed GPIb and VASP to be exclusively associated with PM fractions. Rap IB was also predominantly associated with PM with a small level detected in IM. Antibodies to the IP3 receptor (18A 10 and 4C11) revealed the protein to be predominantly associated with IM. Additionally the antibody 4C11 recognised a 230 kDa protein band in PM that was not seen in IM. From the known specificity of these antibodies the results confirm the presence of a type 1 IP3 receptor in IM and a distinct (possible type III) IP3 receptor with the PM. The 16, 22, 27, 30, 75 and 116 kDa proteins in IM represent newly detected substrates for cAMP-PK of presently unknown identity.
Notes:
H Yamada, A Yamamoto, S Yodozawa, S Kozaki, M Takahashi, M Morita, H Michibata, T Furuichi, K Mikoshiba, Y Moriyama (1996)  Microvesicle-mediated exocytosis of glutamate is a novel paracrine-like chemical transduction mechanism and inhibits melatonin secretion in rat pinealocytes.   J Pineal Res 21: 3. 175-191 Oct  
Abstract: Mammalian pinealocytes are neuroendocrine cells that synthesize and secrete melatonin, these processes being positively controlled by norepinephrine derived from innervating sympathetic neurons. Previously, we showed that pinealocytes contain a large number of microvesicles (MVs) that specifically accumulate L-glutamate through a vesicular glutamate transporter and contain proteins for exocytosis such as synaptobrevin 2 (VAMP2). These findings suggested that the MVs are counterparts of synaptic vesicles and are involved in paracrine-like chemical transduction in the pineal gland. Here, we show that pinealocytes actually secrete glutamate upon stimulation by KCl in the presence of Ca2+ at 37 degrees C. The ability of glutamate secretion disappeared when the cells were incubated at below 20 degrees C. Loss of the activity was also observed on successive stimulation, but it was recovered after 12 hr incubation. A low concentration of cadmium chloride or omega-conotoxin GVIA inhibited the secretion. Botulinum neurotoxin E cleaved synaptic vesicle-associated protein 25 (SNAP-25) and thus inhibited the secretion. The released L-glutamate stimulated pinealocytes themselves via glutamate receptor(s) and inhibited norepinephrine-stimulated melatonin secretion. These results strongly suggest that pinealocytes are glutaminergic paraneurons, and that the glutaminergic system regulates negatively the synthesis and secretion of melatonin. The MV-mediated paracrine-like chemical transduction seems to be a novel mechanism that regulates hormonal secretion by neuroendocrine cells.
Notes:
M Matsumoto, T Nakagawa, T Inoue, E Nagata, K Tanaka, H Takano, O Minowa, J Kuno, S Sakakibara, M Yamada, H Yoneshima, A Miyawaki, Y Fukuuchi, T Furuichi, H Okano, K Mikoshiba, T Noda (1996)  Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor.   Nature 379: 6561. 168-171 Jan  
Abstract: The inositol 1,4,5-trisphosphate (InsP3) receptor acts as an InsP3-gated Ca2+ release channel in a variety of cell types. Type 1 InsP3 receptor (IP3R1) is the major neuronal member of the IP3R family in the central nervous system, predominantly enriched in cerebellar Purkinje cells but also concentrated in neurons in the hippocampal CA1 region, caudate-putamen, and cerebral cortex. Here we report that most IP3R1-deficient mice generated by gene targeting die in utero, and born animals have severe ataxia and tonic or tonic-clonic seizures and die by the weaning period. An electroencephalogram showed that they suffer from epilepsy, indicating that IP3R1 is essential for proper brain function. However, observation by light microscope of the haematoxylin-eosin staining of the brain and peripheral tissues of IP3R1-deficient mice showed no abnormality, and the unique electrophysiological properties of the cerebellar Purkinje cells of IP3R1-deficient mice were not severely impaired.
Notes:
D Furutama, K Shimoda, S Yoshikawa, A Miyawaki, T Furuichi, K Mikoshiba (1996)  Functional expression of the type 1 inositol 1,4,5-trisphosphate receptor promoter-lacZ fusion genes in transgenic mice.   J Neurochem 66: 5. 1793-1801 May  
Abstract: Inositol 1,4,5-trisphosphate receptor (IP3R) is an inositol 1,4,5-trisphosphate (InsP3)-gated Ca2+ release channel. Type 1 IP3R (IP3R1) is the neuronal member of the IP3R family in the CNS and is predominantly expressed in cerebellar Purkinje cells. To elucidate the molecular mechanisms responsible for coupling gene expression to neuronal InsP3/Ca2+ signaling, we have studied the structure and function of the 5'-flanking region of the mouse IP3R1 gene. The cloned 5'-flanking region has several sequences sharing identity with motifs for known transcriptional regulation. We have fused 5'-flanking regions 1N from -528 to +169 and 4N from -4,187 to +169 to a beta-galactosidase gene (lacZ) as a reporter marker and have characterized their in vivo gene expression. Both 1N and 4N fusion genes functioned as a strong promoter in a neuroblastoma-glioma hybrid cell line NG108-15. Moreover, both 1N and 4N transgenic mouse lines carrying these 1N and 4N fusion genes showed characteristic patterns of beta-galactosidase activity in the CNS that are almost consistent with that of the endogenous IP3R1 protein, thereby suggesting that the 1N region from -528 to +169 contains sequence elements responsible for regulating gene expression in neurons and for specifying predominant expression in cerebellar Purkinje cells.
Notes:
T Michikawa, A Miyawaki, T Furuichi, K Mikoshiba (1996)  Inositol 1,4,5-trisphosphate receptors and calcium signaling.   Crit Rev Neurobiol 10: 1. 39-55  
Abstract: Many cellular responses to extracellular stimuli are mediated by the second messenger inositol 1,4,5-trisphosphate (InsP3). InsP3 releases Ca2+ from intracellular stores by binding to an InsP3 receptor (InSP3R), which is an InsP3-gated Ca2+ release channel. The resultant increase in the cytoplasmic Ca2+ concentration modulates various cellular functions, such as gene expression, metabolism, proliferation, secretion, and neural excitation. In these signaling cascades, InsP3R works as a signal converter from InsP3 to Ca2+. We describe here structural and functional properties and localization of InsP3R, a key molecule in the Ca2+ signaling pathway.
Notes:
1995
I Fujino, N Yamada, A Miyawaki, M Hasegawa, T Furuichi, K Mikoshiba (1995)  Differential expression of type 2 and type 3 inositol 1,4,5-trisphosphate receptor mRNAs in various mouse tissues: in situ hybridization study.   Cell Tissue Res 280: 2. 201-210 May  
Abstract: The inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular Ca2+ release channel responsible for mobilizing stored Ca2+. Three different receptor types have been molecularly cloned, and their genes have been classified into a family. The gene for the type 1 receptor (IP3R1) is predominantly expressed in cerebellar Purkinje neurons, but its gene product is localized widely in a variety of tissues; however, there is little information on what types of cells express the other two receptor types, type 2 and type 3 (IP3R2 and IP3R3, respectively). We studied the expression of the IP3R gene family in various mouse tissues by in situ hybridization histochemistry. Compared with IP3R1, the levels of expression of IP3R2 and IP3R3 mRNAs were low in all of the tissues tested. IP3R2 mRNA was localized in the intralobular duct cells of the submandibular gland, the urinary tubule cells of the kidney, the epithelial cells of epididymal ducts and the follicular granulosa cells of the ovary, while the IP3R3 mRNA was distributed in gastric cells, salivary and pancreatic acinar cells and the epithelium of the small intestine. All of these cells which express either IP3R2 or IP3R3 mRNA are known to have a secretory function in which IP3/Ca2+ signalling has been shown to be involved, and thus either IP3R2 or IP3R3 may be a prerequisite to secretion in these cells.
Notes:
T Monkawa, A Miyawaki, T Sugiyama, H Yoneshima, M Yamamoto-Hino, T Furuichi, T Saruta, M Hasegawa, K Mikoshiba (1995)  Heterotetrameric complex formation of inositol 1,4,5-trisphosphate receptor subunits.   J Biol Chem 270: 24. 14700-14704 Jun  
Abstract: The inositol 1,4,5-trisphosphate receptor (IP3R) exists as a tetrameric complex to form a functional inositol 1,4,5-trisphosphate-gated Ca2+ channel. Molecular cloning studies have shown that there are at least three types of IP3R subunits, designated type 1, type 2, and type 3. The levels of expression of IP3R subunits in various cell lines were investigated by Western blot analysis using type-specific antibodies against 15 C-terminal amino acids of each IP3R subunit. We found that all the three types of IP3R subunits were expressed in each cell line examined, but their levels of expression varied. To determine whether IP3Rs form heterotetramers, we employed immunoprecipitation experiments using Chinese hamster ovary cells (CHO-K1 cells), in which all three types are abundantly expressed. Each type-specific antibody immunoprecipitated not only the respective cognate type but also the other two types. This result suggests that distinct types of IP3R subunits assemble to form heterotetramers in CHO-K1 cells. We also detected heterotetramers in rat liver, in which IP3R type 1 and type 2 are expressed abundantly. Previous studies have shown some functional differences among IP3R types, suggesting the possibility that various compositions of subunits show distinct channel properties. The diversity of IP3R channels may be further increased by the co-assembly of different IP3R subunits to form homo- or heterotetramers.
Notes:
J Hirota, T Michikawa, A Miyawaki, T Furuichi, I Okura, K Mikoshiba (1995)  Kinetics of calcium release by immunoaffinity-purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles.   J Biol Chem 270: 32. 19046-19051 Aug  
Abstract: The kinetics of inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release of the immunoaffinity-purified IP3 receptor (IP3R), reconstituted into lipid vesicles, was investigated using the fluorescent Ca2+ indicator fluo-3. IP3R was purified from mouse cerebellar microsomal fraction by using an immunoaffinity column conjugated with an anti-IP3R type 1 (IP3R1) antibody. The immunoblotting analysis using monoclonal antibodies against each IP3R type showed that the purified IP3R is almost homogeneous, composed of IP3R1. Ca2+ efflux from the proteoliposomes was monitored as fluorescence changes of 10 microM fluo-3, whose concentration was high enough to buffer released Ca2+ and to keep deviations of extravesicular free Ca2+ concentration within 30 nM, excluding the possibility of Ca(2+)-mediated regulation of IP3-induced Ca2+ release. We also examined IP3-induced Ca2+ release using 1 microM fluo-3, where the deviations of free Ca2+ concentration were within 300 nM. At both fluo-3 concentrations, IP3-induced Ca2+ release showed similar kinetic properties, i.e. little Ca2+ regulation of Ca2+ release was observed in this system. IP3-induced Ca2+ release of the purified IP3R exhibited positive cooperativity; the Hill coefficient was 1.8 +/- 0.1. The half-maximal initial rate for Ca2+ release occurred at 100 nM IP3. At the submaximal concentrations of IP3, the purified IP3R showed quantal Ca2+ release, indicating that a single type of IP3R is capable of producing the phenomenon of quantal Ca2+ of release. The profiles of the IP3-induced Ca2+ release of the purified IP3R were found to be biexponential with the fast and slow rate constants (k(fast) = 0.3 approximately 0.7 s-1, k(slow) = 0.03 approximately 0.07 s-1), indicating that IP3R has two states to release CA2+. The amount of released Ca2+ by the slow phase was constant over the range of 10-5000 nM IP3 concentrations, whereas that by the fast phase increased in proportion to added IP3. This provides evidence to support the view that the fast phase of Ca2+ release is mediated by the low affinity state and the slow phase by the high affinity state of the IP3R. This also suggests that the fast component of Ca2+ release is responsible for the process of quantal Ca2+ release.
Notes:
J Hirota, T Michikawa, A Miyawaki, M Takahashi, K Tanzawa, I Okura, T Furuichi, K Mikoshiba (1995)  Adenophostin-medicated quantal Ca2+ release in the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1.   FEBS Lett 368: 2. 248-252 Jul  
Abstract: Kinetics of Ca2+ release by adenophostin, a novel agonist of inositol 1,4,5-trisphosphate (IP3) receptor, in the purified and reconstituted IP3 receptor type 1 (IP3R1) was investigated using the fluorescent Ca2+ indicator fluo-3. Submaximal concentrations of adenophostin caused quantal Ca2+ release from the purified IP3R1 as IP3 did. Adenophostin-induced Ca2+ release by the purified IP3R1 exhibited a high positive cooperativity (nH = 3.9 +/- 0.2, EC50 = 11 nM), whereas the IP3-induced Ca2+ release exhibited a moderate one (nH = 1.8 +/- 0.1, EC50 = 100 nM). Inhibition of [3H]IP3 binding to the purified IP3R1 by adenophostin exhibited a positive cooperativity (nH = 1.9, Ki = 10 nM), whereas IP3 did not (nH = 1.1, Ki = 41 nM).
Notes:
M Yamada, A Miyawaki, K Saito, T Nakajima, M Yamamoto-Hino, Y Ryo, T Furuichi, K Mikoshiba (1995)  The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor.   Biochem J 308 ( Pt 1): 83-88 May  
Abstract: We determined the amino acid sequence responsible for the calmodulin (CaM)-binding ability of mouse type 1 Ins(1,4,5)P3 receptor (IP3R1). We expressed various parts of IP3R1 from deleted cDNA and examined their CaM-binding ability. It was shown that the sequence stretching from Lys-1564 to Arg-1585 is necessary for the binding. The full-length IP3R1 with replacement of Trp-1576 by Ala lost its CaM-binding ability. Antibody against residues 1564-1585 of IP3R1 inhibited cerebellar IP3R1 from binding CaM. The fluorescence spectrum of the peptide that corresponds to residues 1564-1585 shifted when Ca(2+)-CaM was added. From the change in the fluorescence spectrum, we estimated the dissociation constant (KD) between the peptide and CaM to be 0.7 microM. The submicromolar value of KD suggests an actual interaction between CaM and IP3R1 within cells. The CaM-binding ability of other types of IP3Rs was also examined. A part of the type 2IP3R, including the region showing sequence identity with the CaM-binding domain of IP3R1, also bound CaM, while the expressed full-length type 3 IP3R did not.
Notes:
M Yamamoto-Hino, A Miyawaki, H Kawano, T Sugiyama, T Furuichi, M Hasegawa, K Mikoshiba (1995)  Immunohistochemical study of inositol 1,4,5-trisphosphate receptor type 3 in rat central nervous system.   Neuroreport 6: 2. 273-276 Jan  
Abstract: In the rat central nervous system (CNS), inositol 1,4,5-trisphosphate receptor (IP3R) type 3 was immunolocalized with a type 3-specific monoclonal antibody (mAb). The protein was expressed principally in prototype astrocytes, ependymal cells around the ventricle, and Bergmann glial cells in the cerebellum. These cells were stained by antibody against glial fibrillary acidic protein (GFAP), indicating the coexistence of GFAP and IP3R type 3. Immunoblot analysis using a brain homogenate detected a 240 kDa protein, verifying that the observed immunoreactivity is from the IP3R type 3 protein. IP3R type 1 and type 2 were not detected immunohistochemically in astrocytes. These results suggest that IP3-induced CA2+ release (IICR) in astroglia is directed by IP3R type 3, whereas IICR in neuronal cells is mediated by IP3R type 1.
Notes:
1994
T Furuichi, D Furutama, Y Hakamata, J Nakai, H Takeshima, K Mikoshiba (1994)  Multiple types of ryanodine receptor/Ca2+ release channels are differentially expressed in rabbit brain.   J Neurosci 14: 8. 4794-4805 Aug  
Abstract: The neuronal Ca2+ signal is induced by a rise in the intracellular free Ca2+ concentration ([Ca2+]i), and is thought to be important for higher brain function. Dynamic changes in [Ca2+]i are affected by the spatial distributions of various Ca(2+)-increasing molecules (channels and receptors). The ryanodine receptor (RyR) is an intracellular channel through which Ca2+ is released from intracellular stores. To define the contribution of neuronal Ca2+ signaling via the RyR channel, we examined RyR type-specific gene expression in rabbit brain by in situ hybridization histochemistry. The neuronal RyR was composed of three distinct types, two types dominant in skeletal (sRyR) and cardiac (cRyR) muscle, respectively, and a novel brain type (bRyR). sRyR was distinguished by its high level of expression in cerebellar Purkinje cells. cRyR was predominantly expressed throughout nearly the entire brain, and was characterized by its markedly high level of expression in the olfactory nerve layer, layer VI of the cerebral cortex, the dentate gyrus, cerebellar granule cells, the motor trigeminal nucleus, and the facial nucleus. bRyR expression was the least widely distributed throughout the brain, and was high in the hippocampal CA1 pyramidal layer, caudate, putamen, and dorsal thalamus. This investigation demonstrates that the heterogeneous distribution of neuronal RyRs may be implicated in distinct Ca(2+)-associated brain functions. Moreover, it should be noted that cRyR, a typical CICR channel, is distributed widely throughout the brain, suggesting that in a variety of cell types, the amplification of neuronal Ca2+ signals is functionally accompanied by a rise in [Ca2+]i, such as Ca2+ influx stimulated by neuronal activity. This widespread distribution of the neuronal RyR family indicates that Ca2+ signals via the intracellular stores should be considered in studies of neuronal Ca2+ dynamics.
Notes:
T Sugiyama, M Yamamoto-Hino, A Miyawaki, T Furuichi, K Mikoshiba, M Hasegawa (1994)  Subtypes of inositol 1,4,5-trisphosphate receptor in human hematopoietic cell lines: dynamic aspects of their cell-type specific expression.   FEBS Lett 349: 2. 191-196 Aug  
Abstract: Inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ signaling plays important roles in cellular responses to extracellular stimuli. We recently succeeded in cloning human counterparts of the three subtypes derived from separate genes. Using the cDNA sequences type-specific to these subtype receptors, we here analyzed the expression profile of IP3R subtypes in stimulated and unstimulated human hematopoietic cell lines representing T cells, B cells, neutrophils, macrophages, erythrocytes and megakaryocytes. Northern and dot blot analysis showed that each IP3R subtype is expressed differently in these cells and that the expression profile in each cell is dynamically changed upon stimuli which induce differentiation. Moreover, most of these cells were found to simultaneously express at least two different subtype receptors.
Notes:
N Yamada, Y Makino, R A Clark, D W Pearson, M G Mattei, J L Guénet, E Ohama, I Fujino, A Miyawaki, T Furuichi (1994)  Human inositol 1,4,5-trisphosphate type-1 receptor, InsP3R1: structure, function, regulation of expression and chromosomal localization.   Biochem J 302 ( Pt 3): 781-790 Sep  
Abstract: We have isolated cDNA clones encoding an inositol 1,4,5-trisphosphate receptor type 1 (InsP3R1) from human uteri and a leukaemic cell line, HL-60. Northern-blot analysis showed that approx. 10 kb of InsP3R1 mRNA is expressed in human uteri, oviducts and HL-60 cells. The predicted amino acid sequence of human InsP3R1 (2695 amino acids) has 99% identity with that of the mouse SI-/SII- splicing counterpart. Western-blot analysis with anti-(mouse InsP3R1) antibodies showed that InsP3R1 protein of human uteri and oviducts of approx 220 kDa is immunostained. Northern-blot analysis of HL-60 cell differentiation along the neutrophilic lineage induced by retinoic acid or dimethylsulphoxide showed an accompanying enhanced expression of InsP3R1 mRNA. Immunohistochemical analysis of the cerebella of spinocerebellar degeneration patients showed a variable loss of Purkinje cells with an altered pattern of immunostaining. The InsP3R1 gene (Insp3r1) was localized to the 3P25-26 region of human chromosome 3. The data presented here clearly show that InsP3R1 exists widely in human tissues and may play critical roles in various kinds of cellular functions.
Notes:
J Aruga, N Yokota, M Hashimoto, T Furuichi, M Fukuda, K Mikoshiba (1994)  A novel zinc finger protein, zic, is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells.   J Neurochem 63: 5. 1880-1890 Nov  
Abstract: To clarify the mechanism of cerebellar development, we have cloned a gene, named zic, encoding a zinc finger protein that is expressed abundantly in granule cells throughout development of the cerebellum. zic has a significant homology to the zinc finger domain of the Caenorhabditis elegans tra1 gene, the Drosophila cubitus interruptus Dominant gene, and the human GLI oncogene. An in situ hybridization study revealed that zic showed a restricted expression pattern in the granule cells and their putative precursor cells. It is also expressed at an early embryonic stage in the dorsal half of the neural tube. The expression pattern and nuclear localization were confirmed by immunohistochemical study. Furthermore, the bacterially expressed zic protein containing the zinc finger domains bound to the GLI-binding sequence. These findings suggest that zic is one of a number of nuclear factors involved in both differentiation in early development and maintenance of properties of the cerebellar granule cells.
Notes:
K Mikoshiba, T Furuichi, A Miyawaki (1994)  Structure and function of IP3 receptors.   Semin Cell Biol 5: 4. 273-281 Aug  
Abstract: The molecular, structural and functional characteristics of the intracellular Ca2+ release channel activated by inositol 1,4,5-trisphosphate (IP3), also named IP3 receptor (IP3R), are described here. We also discuss the differences in primary structure, expression and modulation of the receptor subtypes and their physiological roles. The similarity and differences between the IP3R and the other intracellular Ca2+ channel, the ryanodine receptor, are briefly presented.
Notes:
T Furuichi, K Kohda, A Miyawaki, K Mikoshiba (1994)  Intracellular channels.   Curr Opin Neurobiol 4: 3. 294-303 Jun  
Abstract: Intracellular channels are located on the membranes of intracellular organelles and are involved in ion transfer, within the cytosolic compartments, in response to internal stimuli. Recently, various types of inositol 1,4,5-trisphosphate- and ryanodine-sensitive Ca(2+)-release channels, mitochondrial voltage-dependent anion channels, and a vesicular Cl- channel have been molecularly cloned and characterized, and their functional roles in the central nervous system are beginning to be clarified.
Notes:
M Wakamori, T Niidome, D Furutama, T Furuichi, K Mikoshiba, Y Fujita, I Tanaka, K Katayama, A Yatani, A Schwartz (1994)  Distinctive functional properties of the neuronal BII (class E) calcium channel.   Receptors Channels 2: 4. 303-314  
Abstract: Functional diversity of voltage-dependent calcium channels (VDCC) is primarily due to the existence of six distinct genes of the channel-forming subunit alpha 1, which can be further classified into the L-type and neuronal non-L-type subfamilies. We have examined functional properties of the calcium channel BII expressed from the cloned cDNA, in Xenopus oocytes, and compared the results with the other members of the non-L-type subfamily, the BI and BIII channels. The BII channel is a high voltage-activated calcium channel pharmacologically features by its unique sensitivity to the inorganic blocker Ni2. The decaying component of the BII current shows high sensitivity to Ni2+ similar to that of the low voltage-activated channels and the R-type channel in cerebellar granule cells, whereas the sustained component is relatively resistant to Ni2+ as are the other high voltage-activated calcium channels. Dihydropyridines, omega-CgTx-GVIA, and omega-Aga-IVA, which have been used to discriminate L-, N-, and P-types, do not affect the BII current. The mode of modulation of the BII channel by auxiliary subunits is strikingly different from that observed in the L-type channels. Both activation and inactivation rates of the BII current are decelerated by coexpression of the beta subunit, and this effect is cancelled by further coexpression of the alpha 2 subunit. In situ tissue distribution studies indicate a higher level of BII mRNA expression in the hippocamus compared to other brain regions, revealing important difference in the relative abundance of BI, BII, and BIII channels in brain tissues. Overall, the results suggest that the BII channel forms a novel functional category of VDCC that is different from T-, L-, N-, and P-type.
Notes:
R J Wojcikiewicz, T Furuichi, S Nakade, K Mikoshiba, S R Nahorski (1994)  Muscarinic receptor activation down-regulates the type I inositol 1,4,5-trisphosphate receptor by accelerating its degradation.   J Biol Chem 269: 11. 7963-7969 Mar  
Abstract: Stimulation of SH-SY5Y human neuroblastoma cells with carbachol, a muscarinic agonist, down-regulates the type I inositol 1,4,5-trisphosphate (InsP3) receptor by > 90% with maximal and half-maximal effects after approximately 6 h and approximately 1 h, respectively. Examination of the mechanistic basis of this down-regulation revealed that carbachol increased the rate of type I InsP3 receptor degradation (radiolabeled immunoprecipitable receptor was lost from cells with half-times of > 8 h and approximately 1 h in the absence and presence of carbachol, respectively) and that the concentration of type I InsP3 receptor mRNA, despite a transient decrease after 3 h, did not correlate with levels of the receptor. Only those muscarinic receptor subtypes coupled to stimulation of phosphoinositide hydrolysis were capable of causing type I InsP3 receptor down-regulation. Ca2+ mobilization was pivotal to the mechanisms of receptor down-regulation, since perturbation of Ca2+ homeostasis with either EGTA or thapsigargin blocked the ability of carbachol to accelerate receptor degradation. Studies with thapsigargin also revealed that both functional InsP3-sensitive Ca2+ stores and persistent elevation of InsP3 concentration were required for down-regulation to occur. In conclusion, phosphoinositidase C-linked muscarinic receptors down-regulate the type I InsP3 receptor by accelerating its degradation. It appears that this process is initiated by persistent discharge of intracellular Ca2+ stores via the channels formed by tetramerically complexed type I InsP3 receptors.
Notes:
T Michikawa, H Hamanaka, H Otsu, A Yamamoto, A Miyawaki, T Furuichi, Y Tashiro, K Mikoshiba (1994)  Transmembrane topology and sites of N-glycosylation of inositol 1,4,5-trisphosphate receptor.   J Biol Chem 269: 12. 9184-9189 Mar  
Abstract: To define the transmembrane topology of the inositol 1,4,5-trisphosphate receptor (InsP3R), we determined the subcellular location of the hydrophilic segment (residues 2463-2529 of mouse type 1 InsP3R) believed to be located at the luminal side of the endoplasmic reticulum (ER) in the six-transmembrane model but at the cytoplasmic side in the eight-transmembrane model. This hydrophilic segment includes two consensus sites for N-glycosylation (Asn-2475 and Asn-2503). We prepared an anti-peptide antibody against residues 2504-2523. Electron microscope immunocytochemical studies of mouse cerebellar Purkinje cells showed that binding of this antibody frequently occurs in the intracisternal space of the ER. We constructed three mutant receptors by site-directed mutagenesis of Asn to Gln (N2475Q, N2503Q, and N2475Q/N2503Q). By concanavalin A column chromatography of these receptors, we found that both Asn-2475 and Asn-2503 are glycosylated. These results indicate that residues 2504-2523, Asn-2475, and Asn-2503 are exposed to the ER lumen. We therefore propose that InsP3R has six membrane-spanning segments. Based on the transmembrane topology and subunit organization, we suggest that InsP3R is a member of the superfamily that includes the voltage- and second messenger-gated ion channels on the plasma membrane.
Notes:
M Yuzaki, T Furuichi, K Mikoshiba, Y Kagawa (1994)  A stimulus paradigm inducing long-term desensitization of AMPA receptors evokes a specific increase in BDNF mRNA in cerebellar slices.   Learn Mem 1: 4. 230-242 Nov/Dec  
Abstract: Long-term desensitization of AMPA receptors (LTDA) is a core mechanism of long-term depression, a model of motor learning in the cerebellum. In this study we investigated the expression of neurotrophic factor genes after induction of LTDA in cultured cerebellar slices. LTDA was induced by application of quisqualate and monitored as a population response with a wedge recording technique. The levels of mRNA were quantified by reverse transcription followed by polymerase chain reaction. Quisqualate, at a dose and duration that reliably induced LTDA, elicited a significant and specific increase in BDNF mRNA with a peak at four hours after the application. By cell fractionation, the major source of BDNF mRNA increase was found to be in granule cells. In addition, a small but significant increase of transcripts with specific exon usage was observed in a Purkinje cell fraction. These results indicate that BDNF may be coinduced with LTDA and suggest that the slow and sustained increase of BDNF mRNA might play a role in later phases of synaptic plasticity in the cerebellum.
Notes:
M Yamamoto-Hino, T Sugiyama, K Hikichi, M G Mattei, K Hasegawa, S Sekine, K Sakurada, A Miyawaki, T Furuichi, M Hasegawa (1994)  Cloning and characterization of human type 2 and type 3 inositol 1,4,5-trisphosphate receptors.   Receptors Channels 2: 1. 9-22  
Abstract: We have cloned cDNAs coding for human type 2 and type 3 and part of type 1 inositol 1,4,5-trisphosphate receptors (IP3Rs). The complete nucleotide sequences for type 2 and type 3 receptors were determined and the pharmacological properties of the latter were characterized. Human type 2 and type 3 IP3Rs are 2701 amino acids and 2671 amino acids long, respectively, and have significant sequence homologies as well as structural similarities including the six membrane-spanning regions near the C-termini when compared with the rat or mouse counterpart. COS-7 cells transfected with human type 3 IP3R showed characteristic inositol 1,4,5-trisphosphate (IP3)-binding properties with Kd values of 28.8 nM. The order of potency of competition with IP3 was Ins(1,4,5)P3 (IP3) > Ins(2,4,5)P3 > Ins(1,3,4,5)P4 > Ins(1,2,3,4,5,6)P6. Type 2 and type 3 IP3Rs were mapped to human chromosomes 12p11 and 6p21, respectively, by in situ hybridization. cDNA cloning of the human IP3Rs allowed us to identify the types of the receptor expressed in various human hematopoietic and lymphoma cell lines. The type 3 receptor was present in all of cell lines tested, while the type 1 or 2 receptor was expressed in only particular cell types. The differential expression of the IP3R types could confer the cell-specific regulation on the IP3/Ca2+ signalling.
Notes:
1993
K Mikoshiba, T Furuichi, A Miyawaki, S Yoshikawa, T Nakagawa, N Yamada, Y Hamanaka, I Fujino, T Michikawa, Y Ryo (1993)  Inositol trisphosphate receptor and Ca2+ signalling.   Philos Trans R Soc Lond B Biol Sci 340: 1293. 345-349 Jun  
Abstract: Inositol 1,4,5-trisphosphate (InsP3) is a second messenger that releases Ca2+ from the intracellular stores. The InsP3 receptor (InsP3-R) was purified and its cDNA was cloned. We have found that InsP3-R is identical to the P400 protein identified as a protein enriched in the cerebellar Purkinje cells. We generated an L fibroblast cell transfectant that produced cDNA derived InsP3-R. The expressed protein displays high affinity and specificity for InsP3. InsP3 induces Ca2+ release from the membrane vesicles of the transfected cells. Incorporation of purified InsP3-R into a lipid bilayer showed InsP3 induced Ca2+ release. These result suggest that InsP3-R is a Ca2+ release channel. Immunogold method using monoclonal antibodies against the receptor showed that it is highly condensed on the smooth surfaced endoplasmic reticulum (ER) and slightly on the outer nuclear membrane and rough ER. Cross linking experiments show that the InsP3-R forms a homotetramer. The approximately 650 N-terminal amino acids are highly conserved between mouse and Drosophila melanogaster, and this region has the critical sequences for InsP3 binding. We found novel subtypes of the InsP3-R resulting from RNA-splicing that are expressed in a tissue-specific and developmentally specific manner and also resulting from different genes. It is believed that there are two Ca2+ release mechanisms, InsP3-induced Ca2+ release (IICR) and Ca(2+)-induced Ca2+ release (CICR). Eggs are good materials to analyse the machanism of Ca2+ signalling: fertilized hamster eggs exhibit repetitive Ca2+ transients as well as the Ca2+ wave.(ABSTRACT TRUNCATED AT 250 WORDS)
Notes:
S Kume, A Muto, J Aruga, T Nakagawa, T Michikawa, T Furuichi, S Nakade, H Okano, K Mikoshiba (1993)  The Xenopus IP3 receptor: structure, function, and localization in oocytes and eggs.   Cell 73: 3. 555-570 May  
Abstract: To study the role of the IP3 receptor (IP3R) upon egg activation, cDNA clones encoding IP3R expressed in the Xenopus oocytes were isolated. By analyses of the primary structure and functional expression of the cDNA, Xenopus IP3R (XIP3R) was shown to have an IP3-binding domain and a putative Ca2+ channel region. Immunocytochemical studies revealed polarized distribution of XIP3R in the cytoplasm of the animal hemisphere in a well-organized endoplasmic reticulum-like structure and intensive localization in the perinuclear region of stage VI immature oocytes. In ovulated unfertilized eggs, XIP3R was densely enriched in the cortical region of both hemispheres in addition to its polarized localization. After fertilization, XIP3R showed a drastic change in its distribution in the cortical region. These results imply the predominant role of the XIP3R in both the formation and propagation of Ca2+ waves at fertilization.
Notes:
Y Fujita, M Mynlieff, R T Dirksen, M S Kim, T Niidome, J Nakai, T Friedrich, N Iwabe, T Miyata, T Furuichi (1993)  Primary structure and functional expression of the omega-conotoxin-sensitive N-type calcium channel from rabbit brain.   Neuron 10: 4. 585-598 Apr  
Abstract: The complete amino acid sequence of a rabbit brain calcium channel (BIII) has been deduced by cloning and sequencing the cDNA. The open reading frame encodes 2339 amino acids, which corresponds to an M(r) of 261,167. A phylogenetic tree representing evolutionary relationships indicates that BIII is grouped together with the other rabbit brain calcium channels, BI and BII, into a subfamily that is distinct from the dihydropyridine-sensitive L-type subfamily. Transient expression in cultured skeletal muscle myotubes derived from muscular dysgenic mice demonstrates that the BIII channel mediates an omega-conotoxin-sensitive calcium current with kinetics and voltage dependence like those previously reported for whole-cell N-type current. Cell-attached patch recordings, with isotonic barium as the charge carrier, revealed distinct single channels with an average slope conductance of 14.3 pS.
Notes:
T Furuichi, D Simon-Chazottes, I Fujino, N Yamada, M Hasegawa, A Miyawaki, S Yoshikawa, J L Guénet, K Mikoshiba (1993)  Widespread expression of inositol 1,4,5-trisphosphate receptor type 1 gene (Insp3r1) in the mouse central nervous system.   Receptors Channels 1: 1. 11-24  
Abstract: The expression of inositol 1,4,5-trisphosphate receptor type 1 (InsP3R1) in the mouse central nervous system (CNS) was studied by in situ hybridization. The receptor mRNAs were widely localized throughout the CNS, predominantly in the olfactory tubercle, cerebral cortex, CA1 pyramidal cell layer of the hippocampus, caudate putamen, and cerebellar Purkinje cells, where phosphoinositide turnover is known to be stimulated by various neurotransmitter receptors. In the most abundantly expressing Purkinje cells, InsP3R1 mRNA appeared to be translocated to the distal dendrites, since a strong hybridization density was observed in the molecular layer of the cerebellum. InsP3R protein is known to form tetrameric receptor-channel complex. Our preliminary hybridization data using probes for three distinct InsP3R subtypes showed preferential expression of InsP3R1 in many parts of the CNS. The expression of other receptor subtypes (InsP3R2 and InsP3R3) is less efficient, suggesting that a homotetramer formed of InsP3R1 subtype may play a central part in InsP3/Ca2+ signalling in the neuronal function, whereas a homotetramer of other subtypes and a possible heterotetramer among subtypes may be involved in differential InsP3/Ca2+ signalling. The chromosomal localization of the gene coding for InsP3R1 was confirmed on chromosome 6 but was found to be genetically independent of the Lurcher (Lc) mutation.
Notes:
S Yoshikawa, I Miyamoto, J Aruga, T Furuichi, H Okano, K Mikoshiba (1993)  Isolation of a Drosophila gene encoding a head-specific guanylyl cyclase.   J Neurochem 60: 4. 1570-1573 Apr  
Abstract: We have isolated and characterized a new guanylyl cyclase gene (dgc1) in Drosophila. The deduced amino acid sequence (683 amino acids) most closely resembled the mammalian soluble-type guanylyl cyclase alpha subunit. The cyclase catalytic domain was highly conserved between the mammalian and Drosophila guanylyl cyclases. The dgc1 mRNA was detected in wild-type heads but not in bodies, and its level was reduced in the mutant eyes absent (eya), indicating that dgc1 is preferentially expressed in the CNS and in the eye. The enriched distribution in the eye suggests that dgc1 may have a role in phototransduction.
Notes:
Y Ryo, A Miyawaki, T Furuichi, K Mikoshiba (1993)  Expression of the metabotropic glutamate receptor mGluR1 alpha and the ionotropic glutamate receptor GluR1 in the brain during the postnatal development of normal mouse and in the cerebellum from mutant mice.   J Neurosci Res 36: 1. 19-32 Sep  
Abstract: Expression of the metabotropic glutamate receptor type 1 alpha (mGluR1 alpha) and the non-N-methyl-D-aspartate (NMDA) ionotropic glutamate receptor type 1 (GluR1) in mouse brain was investigated using the antibodies raised against the synthetic peptides corresponding to their C-terminal amino acid sequences. Both receptor proteins are glycosylated predominantly in an asparagine-linked manner, and are abundant in post-synaptic membranes. We showed that mGluR1 alpha and GluR1 expression within the first 3 postnatal weeks undergoes dramatic changes in time and space, i.e., in the hippocampus and cerebellum. These spatio-temporal expression patterns appear to be correlated with the postnatal ontogenesis and establishment of the glutamatergic neurotransmission system in the hippocampus and cerebellum, cell migration, dendritic and axonal growth, spine formation, and synaptogenesis. In the adult cerebellum, mGluR1 alpha is intensely expressed in Purkinje neurons and GluR1 in Bergmann glial cells. Both receptors are expressed to a fair degree in weaver mutant cerebellum despite granule cell degeneration. However, the intrinsic expression levels of both mGluR1 alpha and GluR1 are markedly reduced in the cerebellum of the Purkinje cell-deficient and underdeveloped mutant mice, Purkinje-cell-degeneration, Lurcher, and staggerer, suggesting that GluR1 expression in Bergmann glia cells may be correlated with the sustained interaction with adjacent Purkinje neurons.
Notes:
1992
S Yoshikawa, T Tanimura, A Miyawaki, M Nakamura, M Yuzaki, T Furuichi, K Mikoshiba (1992)  Molecular cloning and characterization of the inositol 1,4,5-trisphosphate receptor in Drosophila melanogaster.   J Biol Chem 267: 23. 16613-16619 Aug  
Abstract: We isolated a cDNA encoding an inositol 1,4,5-trisphosphate receptor (InsP3R) of Drosophila melanogaster. The predicted Drosophila InsP3R (2,833 amino acids) has extensive sequence similarity to the mouse InsP3R. The polypeptide encoded by the cDNA was functionally expressed and showed characteristic InsP3-binding activity. The Drosophila InsP3R gene is located at the region 83A5-9 on the third chromosome and expresses throughout development but predominantly in the adult. Localization of the InsP3R mRNA in adult tissues suggests strong expression in the retina and antenna, indicating the involvement of the InsP3R in visual and olfactory transduction. In addition, the InsP3R mRNA is abundant in the legs and thorax, which are enriched with a muscular system. Such localization is apparently consistent with the quantitatively predominant sites for [3H]InsP3 binding in Drosophila and the fleshfly (Boettcherisca peregrina). The present study points to the likely functional importance of the InsP3/Ca2+ signaling system in Drosophila.
Notes:
K Mikoshiba, T Furuichi, A Miyawaki, S Yoshikawa, N Maeda, M Niinobe, S Nakade, T Nakagawa, H Okano, J Aruga (1992)  The inositol 1,4,5-trisphosphate receptor.   Ciba Found Symp 164: 17-29; discussion 29-35  
Abstract: Inositol 1,4,5-trisphosphate (InsP3) is a second messenger that releases Ca2+ from its intracellular stores. The InsP3 receptor has been purified and its cDNA has been cloned. We have found that the InsP3 receptor is identical to P400 protein, first identified as a protein enriched in cerebellar Purkinje cells. We have generated an L-fibroblast cell transfectant that produces cDNA-derived InsP3 receptors. The protein displays high affinity and specificity for InsP3. InsP3 induces greater Ca2+ release from membrane vesicles from transfected cells than from those from control L-fibroblasts. After incorporation of the purified InsP3 receptor into lipid bilayers InsP3-induced Ca2+ currents were demonstrated. These results suggest that the InsP3 receptor is involved in physiological Ca2+ release. Immunogold labelling using monoclonal antibodies against the receptor showed that it is highly concentrated on the smooth-surfaced endoplasmic reticulum and slightly on the outer nuclear membrane and rough endoplasmic reticulum; no labelling of Golgi apparatus, mitochondria and plasmalemma was seen. Cross-linking experiments showed that the receptor forms a homotetramer. The approximately 650 N-terminal amino acids are highly conserved between mouse and Drosophila, and this region contains the critical sequences for InsP3 binding. We have investigated the heterogeneity of the InsP3 receptor using the polymerase chain reaction and have found novel subtypes of the mouse InsP3 receptor that are expressed in a tissue-specific and developmentally specific manner.
Notes:
1991
Y Mori, T Friedrich, M S Kim, A Mikami, J Nakai, P Ruth, E Bosse, F Hofmann, V Flockerzi, T Furuichi (1991)  Primary structure and functional expression from complementary DNA of a brain calcium channel.   Nature 350: 6317. 398-402 Apr  
Abstract: The primary structure of a voltage-dependent calcium channel from rabbit brain has been deduced by cloning and sequencing the complementary DNA. Calcium channel activity expressed from the cDNA is dramatically increased by coexpression of the alpha 2 and beta subunits, known to be associated with the dihydropyridine receptor. This channel is a high voltage-activated calcium channel that is insensitive both to nifedipine and to omega-conotoxin. We suggest that it is expressed predominantly in cerebellar Purkinje cells and granule cells.
Notes:
T Nakagawa, H Okano, T Furuichi, J Aruga, K Mikoshiba (1991)  The subtypes of the mouse inositol 1,4,5-trisphosphate receptor are expressed in a tissue-specific and developmentally specific manner.   Proc Natl Acad Sci U S A 88: 14. 6244-6248 Jul  
Abstract: Additional subtypes of the inositol 1,4,5-trisphosphate (InsP3) receptor are expressed in a tissue-specific and developmentally specific manner. They differ from the InsP3 receptor structure previously reported in two small variably spliced segments. One segment (SI) is located within the InsP3 binding site, whereas another segment (SII) is located near putative sites for phosphorylation and ATP binding to modulate InsP3 action on Ca2+ flux. Therefore, we speculate that selective use of InsP3 receptor subtypes permits a tissue-specific and developmentally specific expression of functionally distinct channels.
Notes:
A Miyawaki, T Furuichi, Y Ryou, S Yoshikawa, T Nakagawa, T Saitoh, K Mikoshiba (1991)  Structure-function relationships of the mouse inositol 1,4,5-trisphosphate receptor.   Proc Natl Acad Sci U S A 88: 11. 4911-4915 Jun  
Abstract: The homotetrameric complex of inositol 1,4,5-triphosphate (InsP3) receptors displays a Ca2+ release activity in response to InsP3 molecules. Structure-function relationships of the mouse cerebellar InsP3 receptor have been studied by analyses of a series of internal deletion or C-terminal truncation mutant proteins expressed in NG108-15 cells. Within the large cytoplasmic portion of the InsP3 receptor, approximately 650 N-terminal amino acids are highly conserved between mouse and Drosophila, and this region has the critical sequences for InsP3 binding that probably form the three-dimensionally restricted binding site. The N-terminal region of each InsP3 receptor subunit also binds one InsP3 molecule. Cross-linking experiments have revealed that InsP3 receptors are intermolecularly associated at the transmembrane domains and/or the successive C termini. The interaction between the receptor subunit and InsP3 may cause a conformational change in the tetrameric complex, resulting in the opening of Ca2+ channels.
Notes:
1990
K Nakahira, K Ikenaka, K Wada, T Tamura, T Furuichi, K Mikoshiba (1990)  Structure of the 68-kDa neurofilament gene and regulation of its expression.   J Biol Chem 265: 32. 19786-19791 Nov  
Abstract: The complete structure of the mouse 68-kDa neurofilament (NF-L) gene was elucidated. We cloned cDNAs corresponding to 3.5- and 2.3-kb NF-L mRNA, including their polyadenylation sites. Sequence analysis revealed that these NF-L mRNAs arose from the alternative use of two polyadenylation sites in exon 4. Promoter analysis using NF-L promoter-beta-galactosidase fusion plasmids determined regions responsible for its basic promoter activity, which were located between -328 and -36 base pairs from the transcription initiation site. These promoter fusion plasmids induced a significant level of beta-galactosidase in NF-nonproducing C6 cells as well as in NF-producing PC12h cells. The in vitro transcription assay using HeLa cell extract also showed that this promoter exhibited strong transcriptional activity. Little difference in NF-L mRNA stability was observed between the two cells. However, nuclear run-off assay revealed that the NF-L gene was not transcribed in NF-nonproducing C6 cells. These data suggest that the strong promoter activity of the NF-L gene is repressed in vivo at the transcription initiation level in a tissue-specific manner.
Notes:
A Miyawaki, T Furuichi, N Maeda, K Mikoshiba (1990)  Expressed cerebellar-type inositol 1,4,5-trisphosphate receptor, P400, has calcium release activity in a fibroblast L cell line.   Neuron 5: 1. 11-18 Jul  
Abstract: P400, inositol 1,4,5-trisphosphate receptor (InsP3-R), is a key protein to understanding the mechanisms of inositol 1,4,5-trisphosphate (InsP3)-mediated Ca2+ mobilization. We obtained the cerebellar-type P400/InsP3-R cDNA and generated an L cell transfectant (L15) that produces cDNA-derived P400/InsP3-R. In membranes, this protein displays high affinity, specificity, and capacity for InsP3, as does the cerebellar P400/InsP3-R. InsP3 can also induce greater 45Ca2+ release from the membrane vesicles of L15 cells than from those of control L cells. These results provide direct evidence that the cDNA-derived P400/InsP3-R protein is actually involved in physiological Ca2+ mobilization, through binding to InsP3 molecules in the same manner as the cerebellar P400/InsP3-R.
Notes:
T Furuichi, C Shiota, K Mikoshiba (1990)  Distribution of inositol 1,4,5-trisphosphate receptor mRNA in mouse tissues.   FEBS Lett 267: 1. 85-88 Jul  
Abstract: Northern blot analysis demonstrated that the concentration of inositol 1,4,5-triphosphate (IP3) receptor mRNA was greatest in cerebellar tissue. Moderate amounts of IP3 mRNA were present in brain tissue without cerebellum and tissue of the thymus, heart, lung, liver, spleen, kidney, and uterus. Small amounts of IP3 receptor mRNA were observed in skeletal muscle and testicular tissue. Regional distribution of IP3 mRNA in various tissues was also examined by in situ hybridization. A considerable amount of IP3 receptor mRNA was located in smooth muscle cells, such as those of the arteries, bronchioles, oviduct and uterus. In addition, secondary oocytes surrounded by Graafian follicles in the ovary were found to have large amounts of IP3 receptor mRNA. The present studies suggest a functional importance of the IP3 second-messenger system in these cell types.
Notes:
T Inoue, T Tamura, T Furuichi, K Mikoshiba (1990)  Isolation of complementary DNAs encoding a cerebellum-enriched nuclear factor I family that activates transcription from the mouse myelin basic protein promoter.   J Biol Chem 265: 31. 19065-19070 Nov  
Abstract: A nuclear factor I (NFI) binding sequence in the myelin basic protein (MBP) promoter is required for brain-specific transcription. In the present study, we isolated multiple cDNAs encoding a family of NFI, NFI-B, from mouse brain cDNA libraries. These clones contain unique nucleotide sequences at their 5', 3', or middle portions, presumably as a result of alternative splicing. The entire sequence of NFI-B suggests that NFI-B is a mouse counterpart of NFI-L, which was previously isolated from rat liver. NFI-B is highly enriched in the cerebellum, in contrast with a ubiquitous NFI, CTF/NF-I. NFI-B proteins translated in vitro could bind to the MBP NFI site. Furthermore, we demonstrated by transfection experiments that NFI-B activated transcription from transfected MBP promoter in neuronal/glial NG108-15 cells.
Notes:
1989
T Furuichi, S Yoshikawa, A Miyawaki, K Wada, N Maeda, K Mikoshiba (1989)  Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400.   Nature 342: 6245. 32-38 Nov  
Abstract: Cloning and expression of functional P400 protein from cerebellar Purkinje neurons shows that this protein is a receptor for inositol 1,4,5-trisphosphate, a second messenger that mediates the release of intracellular calcium.
Notes:
1988
A Dhundale, T Furuichi, M Inouye, S Inouye (1988)  Mutations that affect production of branched RNA-linked msDNA in Myxococcus xanthus.   J Bacteriol 170: 12. 5620-5624 Dec  
Abstract: A deletion mutation of the gene (msd-msr) for the branched RNA-linked msDNA of Myxococcus xanthus was constructed by replacing the chromosomal 0.7-kilobase (kb) SmaI-XhoI fragment encompassing msd-msr with a 1.4-kb fragment carrying a gene for kanamycin resistance. It was found that this deletion strain (delta msSX) could not produce msDNA, although it still contained another species of msDNA, mrDNA (msDNA, reduced size). No apparent differences between delta msSX and the wild-type strain were observed in terms of cell growth, morphogenesis, fruiting-body formation, or motility. Both a deletion mutation at the region 100 base pairs upstream of msd and an insertion mutation at a site 500 base pairs upstream of msd showed a significant reduction of msDNA production, indicating that there is a cis- or trans-acting positive element in this region. When the 3.5-kb BamHI fragment carrying msd-msr from Stigmatella aurantiaca was inserted into the M. xanthus chromosome, the S. aurantiaca msDNA was found to be produced in M. xanthus.
Notes:
K Ikenaka, T Furuichi, Y Iwasaki, A Moriguchi, H Okano, K Mikoshiba (1988)  Myelin proteolipid protein gene structure and its regulation of expression in normal and jimpy mutant mice.   J Mol Biol 199: 4. 587-596 Feb  
Abstract: The mouse proteolipid protein (PLP) gene was cloned into the lambda bacteriophage Charon 4A. The organization and the nucleotide sequence of the exons of the mouse PLP gene were quite similar to those of their human counterparts, consisting of seven exons. The transcription of the PLP gene started from multiple sites. There was a unique sequence tandemly repeated four times, sharing homology with the herpes simplex virus DR2 sequence, upstream from the transcribed region. Expression of the myelin basic protein (MBP) is also restricted to the oligodendrocytes in the central nervous system as is the PLP expression. Homology search against the mouse MBP gene revealed that several boxes in the 5'-flanking region of PLP show a high degree of homology with the sequence present in the MBP 5'-flanking region, possibly of importance in the concomitant expression of both genes in the central nervous system. PLP-mRNA in jimpy mutant mice does not contain exon 5 and its content is greatly reduced. We analyzed the jimpy PLP-mRNA and showed that the transcription initiated from the same sites as those in normal mice. Cloning and sequencing of the 5'-flanking region of the jimpy PLP gene revealed that there were no mutations in the promoter region of the jimpy PLP gene. Therefore, it is likely that a mutation, presumably existing within the jimpy PLP gene, caused the skipping of exon 5 and directly affected the mRNA level.
Notes:
1987
T Furuichi, S Inouye, M Inouye (1987)  Biosynthesis and structure of stable branched RNA covalently linked to the 5' end of multicopy single-stranded DNA of Stigmatella aurantiaca.   Cell 48: 1. 55-62 Jan  
Abstract: Stigmatella aurantiaca, a gram-negative bacterium, contains approximately 500 copies per cell of a short single-stranded linear DNA (multicopy single-stranded DNA: msDNA). This DNA is attached to a branched RNA (msdRNA) by its 5' end. The entire sequence of msdRNA was determined and found to consist of 76 bases. The msDNA is linked at the 19th G residue of msdRNA by a 2', 5' phosphodiester linkage. The coding region for msdRNA (msr) is located downstream of the coding region for msDNA (msd). These coding regions exist in opposite orientation with respect to each other and overlap by 8 bases at their 3' ends. Biosynthesis of RNA-linked msDNA was characterized and mechanisms of synthesis are proposed.
Notes:
T Furuichi, A Dhundale, M Inouye, S Inouye (1987)  Branched RNA covalently linked to the 5' end of a single-stranded DNA in Stigmatella aurantiaca: structure of msDNA.   Cell 48: 1. 47-53 Jan  
Abstract: Stigmatella aurantiaca is a gliding, gram-negative bacterium that shows a spectacular fruiting body formation upon starvation of nutrient. This bacterium was found to contain approximately 500 copies per cell of a short single-stranded linear DNA (multicopy single-stranded DNA: msDNA). The primary structure of msDNA was determined and found to consist of 162 or 163 deoxyribonucleotides. Its unique chromosomal gene was cloned and sequenced. The msDNA was found to be attached to a branched RNA by its 5' end. Structural analysis of the branched RNA revealed that it consists of a triribonucleotide, 5'A-G-(C or U)3', and that msDNA is branched out from the 2' position of the rG residue forming a 2', 5' phosphodiester linkage with the dC residue at the 5' end of msDNA.
Notes:
A Dhundale, B Lampson, T Furuichi, M Inouye, S Inouye (1987)  Structure of msDNA from Myxococcus xanthus: evidence for a long, self-annealing RNA precursor for the covalently linked, branched RNA.   Cell 51: 6. 1105-1112 Dec  
Abstract: The branched RNA (msdRNA) of M. xanthus consists of 77 bases. The 20th rG residue is linked to the 5' end of msDNA, consisting of 162 bases, by a 2', 5' phosphodiester linkage. The msdRNA coding region is located on the chromosome in the opposite orientation to the msDNA coding region, with the 3' ends overlapping by eight bases. S1 nuclease mapping experiments indicate that the primary product of msdRNA is much longer at both the 5' and 3' ends (approximately 375 bases). Because of homologous sequences upstream of the msdRNA and msDNA coding regions, the precursor RNA molecule is considered to form an extremely stable stem-and-loop structure (delta G = -210 kcal). We propose a novel mechanism of DNA synthesis in which the stem-and-loop structure serves as a primer as well as a template to form the branched RNA-linked msDNA.
Notes:
A Moriguchi, K Ikenaka, T Furuichi, H Okano, Y Iwasaki, K Mikoshiba (1987)  The fifth exon of the myelin proteolipid protein-coding gene is not utilized in the brain of jimpy mutant mice.   Gene 55: 2-3. 333-337  
Abstract: The jimpy mouse, an X-linked recessive dysmyelinating and demyelinating mutant, has been shown to contain abnormal myelin proteolipid protein (PLP) mRNA. To understand the molecular basis of the mutation, we analyzed the structure of PLP mRNA by an RNase-mapping procedure, using the probes specific to each exon of the mouse PLP gene. We found that the fifth exon of the PLP gene is not utilized in the jimpy.
Notes:
1986
T Komano, A Kubo, T Kayanuma, T Furuichi, T Nisioka (1986)  Highly mobile DNA segment of IncI alpha plasmid R64: a clustered inversion region.   J Bacteriol 165: 1. 94-100 Jan  
Abstract: When R64 DNA was digested with EcoRI, two DNA fragments not equimolar to the plasmid DNA were produced. A DNA region including these fragments was cloned (pKK009), and the pKK009 DNA sample was found to be a mixture of six or more DNA species with EcoRI, PstI, and AvaI cleavage sites at different positions, suggesting a complex rearrangement of DNA. When a part of the pKK009 DNA was removed by HindIII digestion, 33 different types of plasmids (pKK010-series plasmids) were obtained out of 58 clones tested, but no DNA rearrangement could be observed. On the basis of a comparison of the detailed restriction maps of these pKK010-series plasmids, we propose a model in which four DNA segments invert independently or in groups within the 1.95-kilobase region of R64, so that the arrangements of these four segments change randomly. The fixed pKK010-series plasmid DNA was again rearranged in the presence of R64, indicating that trans-acting gene function may be present to mediate the DNA rearrangement. The gene (tentatively designated as rci) was located on a 4.5-kilobase E9' fragment of R64.
Notes:
1985
T Furuichi, T Komano, M Inouye, S Inouye (1985)  Functional complementation between the two homologous genes, ops and tps, during differentiation of Myxococcus xanthus.   Mol Gen Genet 199: 3. 434-439  
Abstract: Protein S is a development-specific protein of Myxococcus xanthus encoded by the tps gene. It has been shown that there are two extensively homologous genes (ops and tps) tandemly repeated in the same direction with a 1.4 kb spacer fragment between them (Inouye et al. 1983). Seven deletion mutants were constructed by removing the ops gene, the tps gene, segments of the spacer sequence or combinations of these regions. The deleted regions were replaced with DNA fragments carrying the Tn5 gene for kanamycin resistance. The effects of deleting different regions on morphological changes and on patterns of protein synthesis during fruiting body formation were examined. The process of fruiting body formation was severely delayed when both the ops and the tps genes were deleted. However, this delay could be suppressed by either the ops gene or the tps gene, individually, although in the latter case, a slight delay was still observed. These results indicate that the ops gene is expressed during fruiting body formation and plays a role in the normal program of M. xanthus differentiation. Furthermore, the role of the ops gene can be complemented by the tps gene. The deletion of the ops and/or tps genes had no effect on glycerol-spore formation.
Notes:
A R Dhundale, T Furuichi, S Inouye, M Inouye (1985)  Distribution of multicopy single-stranded DNA among myxobacteria and related species.   J Bacteriol 164: 2. 914-917 Nov  
Abstract: Multicopy single-stranded DNA (msDNA) is a short single-stranded linear DNA originally discovered in Myxococcus xanthus and subsequently found in Stigmatella aurantiaca. It exists at an estimated 500 to 700 copies per chromosome (T. Yee, T. Furuichi, S. Inouye, and M. Inouye, Cell 38:203-209, 1984). We found msDNA in other myxobacteria, including Myxococcus coralloides, Cystobacter violaceus, Cystobacter ferrugineus (Cbfe17), Nannocystis exedens, and nine independently isolated strains of M. xanthus. The presence of msDNA in N. exedens would extend its phylogenetic distribution into another family of myxobacteria. Flexibacter elegans, a Cytophaga-like gliding bacteria which may be even more distantly related, also contained an msDNA but at a much lower copy number. msDNA was not detected in closely related strains of the myxobacteria Cystobacter fuscus and C. ferrugineus (Cbfe16 and Cbfe18) and the more distantly related eubacteria Herpetosiphon giganteus, Taxeobacter ocellatus, Lysobacter antibioticus, Lysobacter enzymogenes, Cytophaga johnsonae, Rhodopseudomonas sphaeroides, and Rhodospirillum rubrum. Thus far, msDNA has been found in certain gliding bacteria but not in others.
Notes:
T Furuichi, M Inouye, S Inouye (1985)  Novel one-step cloning vector with a transposable element: application to the Myxococcus xanthus genome.   J Bacteriol 164: 1. 270-275 Oct  
Abstract: A new strategy was developed for rapid cloning of genes with a transposon mutation library. We constructed a transposon designated TnV that was derived from Tn5 and consists of the gene coding for neomycin phosphotransferase II as well as the replication origin of an Escherichia coli plasmid, pSC101, flanked by Tn5 inverted repeats (IS50L and IS50R). TnV can transpose to many different sites of DNA in E. coli and Myxococcus xanthus and confers kanamycin resistance (Kmr) to the cells. From the Kmr cells, one-step cloning of a gene which is mutated as a result of TnV insertion can be achieved as follows. Chromosomal DNA isolated from TnV-mutagenized cells is digested with an appropriate restriction enzyme, ligated, and transformed into E. coli cells with selection for Kmr. The plasmids isolated contain TnV in the target gene. The plasmid DNA can then be used as a probe for characterization of the gene and screening of clones from a genomic library. We used this vector to clone DNA fragments containing genes involved in the development of M. xanthus.
Notes:
M Teintze, R Thomas, T Furuichi, M Inouye, S Inouye (1985)  Two homologous genes coding for spore-specific proteins are expressed at different times during development of Myxococcus xanthus.   J Bacteriol 163: 1. 121-125 Jul  
Abstract: The ops and tps genes of Myxococcus xanthus have ca. 90% DNA and amino acid sequence homology and are in the same orientation separated by a spacer region of only 1.4 kilobases. The products of the two genes were found to cross-react immunologically, and both were capable of Ca2+-dependent self-assembly on the surface of myxospores. However, the ops and tps genes were expressed very differently during the developmental cycle of M. xanthus. The tps gene is induced early during fruiting body formation on a solid surface, and its product, protein S, is made in large quantities (up to 15% of total protein synthesis). When the cells turn into myxospores, protein S is assembled on the outer surface of the spore. We have now also found it in much smaller quantities inside the spores. The ops gene, on the other hand, appears to be induced later in development, after the cells have sporulated, since the ops gene product was found only inside the spores. When an ops gene under the control of a tps gene promoter was inserted into a wild-type strain, the ops gene product was synthesized at the same time as protein S and assembled onto the spore surface.
Notes:
1984
T Furuichi, T Komano, T Nisioka (1984)  Physical and genetic analyses of the Inc-I alpha plasmid R64.   J Bacteriol 158: 3. 997-1004 Jun  
Abstract: A 126-kilobase (kb) physical and genetic map of the Inc-I alpha plasmid R64 was constructed by using the restriction enzymes, BamHI, SalI, XhoI, HindIII, and EcoRI. The replication (Rep) and incompatability (Inc) functions of this plasmid were located in a 1.75-kb segment of an EcoRI fragment, E10 (3.3 kb). In addition, the genes determining growth inhibition of phage BF23 (Ibf), suppression of dnaG ( Sog ), resistance to tetracycline (Tetr), and resistance to streptomycin ( Strr ) were located on the 5.5-kb HindIII-XhoI fragment, the 8.1-kb EcoRI fragment (E5), the 4.6-kb HindIII fragment (H8), and the 4.1-kb HindIII fragment (H10), respectively. The map of R64 was compared with that of ColIb, which belongs to the Inc-I alpha group.
Notes:
T Yee, T Furuichi, S Inouye, M Inouye (1984)  Multicopy single-stranded DNA isolated from a gram-negative bacterium, Myxococcus xanthus.   Cell 38: 1. 203-209 Aug  
Abstract: A gram-negative bacterium, Myxococcus xanthus, was found to contain 500 to 700 copies per chromosome of a short single-stranded linear DNA fragment. When this DNA (multicopy single-stranded DNA; msDNA) labeled at the 5' end with kinase was used as a probe against total chromosomal blots, it hybridized to unique high molecular weight bands, which were cloned and sequenced. Labeling of msDNA was also possible using the Klenow fragment of DNA polymerase I as well as terminal deoxynucleotidyl transferase, permitting direct sequencing. The 5' end of msDNA was found to be primed by a short RNA segment. The DNA portion of msDNA consisted of 163 bases. Exact correspondence was seen between the msDNA sequence and the sequence of a chromosomal clone. An elaborate secondary structure is postulated for the msDNA sequence. A similar satellite DNA was also found in another myxobacterium, Stigmatella aurantiaca.
Notes:
T Komano, T Furuichi, M Teintze, M Inouye, S Inouye (1984)  Effects of deletion of the gene for the development-specific protein S on differentiation in Myxococcus xanthus.   J Bacteriol 158: 3. 1195-1197 Jun  
Abstract: A deletion mutation of the gene for protein S (tps), a development-specific protein of Myxococcus xanthus, was constructed. No significant differences in the process of fruiting body formation or the yield of myxospores were observed between mutant and wild-type cells. On the other hand, when the tps gene was deleted together with a 2.0-kilobase sequence including the ops gene immediately upstream of the tps gene, fruiting body formation was substantially delayed, and the yield of myxospores was reduced. These results indicate that protein S is not essential for differentiation of M. xanthus, whereas a gene product(s) coded from the sequence upstream of the tps gene appears to be required for normal fruiting body formation.
Notes:
Powered by PublicationsList.org.