hosted by
publicationslist.org
    
Thibault Renoir    - research student -

tibo.renoir@gmail.com

Journal articles

2008
 
DOI   
PMID 
Thibault Renoir, Eleni Païzanis, Malika El Yacoubi, Françoise Saurini, Naïma Hanoun, Maxette Melfort, Klaus Peter Lesch, Michel Hamon, Laurence Lanfumey (2008)  Differential long-term effects of MDMA on the serotoninergic system and hippocampal cell proliferation in 5-HTT knock-out vs. wild-type mice.   Int J Neuropsychopharmacol 11: 8. 1149-1162 Dec  
Abstract: Although numerous studies investigated the mechanisms underlying 3,4-methylenedioxymethamphetamine (MDMA)-induced neurotoxicity, little is known about its long-term functional consequences on 5-HT neurotransmission in mice. This led us to evaluate the delayed effects of MDMA exposure on the 5-HT system, using in-vitro and in-vivo approaches in both 5-HTT wild-type and knock-out mice. Acute MDMA in-vitro application on slices of the dorsal raphe nucleus (DRN) induced concentration-dependent 5-HT release and 5-HT cell firing inhibition. Four weeks after MDMA administration (20 mg/kg b.i.d for 4 d), a 2-fold increase in the potency of the 5-HT1A receptor agonist ipsapirone to inhibit the discharge of DRN 5-HT neurons and a larger hypothermic response to 8-OH-DPAT were observed in MDMA- compared to saline-treated mice. This adaptive 5-HT1A autoreceptor supersensitivity was associated with decreases in 5-HT levels but no changes of [3H]citalopram binding in brain. Long-term MDMA treatment also induced a 30% decrease in BrdU labelling of proliferating hippocampal cells and an increased immobility duration in the forced swim test suggesting a depressive-like behaviour induced by MDMA treatment. All these effects were abolished in 5-HTT-/- knock-out mice. These data indicated that, in mice, MDMA administration induced a delayed adaptive supersensitivity of 5-HT1A autoreceptors in the DRN, a deficit in hippocampal cell proliferation and a depressive-like behaviour. These 5-HTT-dependent effects, opposite to those of antidepressants, might contribute to MDMA-induced mood disorders.
Notes:
 
DOI   
PMID 
Sabah Kelaï, Thibault Renoir, Laurent Chouchana, Françoise Saurini, Naïma Hanoun, Michel Hamon, Laurence Lanfumey (2008)  Chronic voluntary ethanol intake hypersensitizes 5-HT(1A) autoreceptors in C57BL/6J mice.   J Neurochem 107: 6. 1660-1670 Dec  
Abstract: Alcoholism is a complex disorder involving, among others, the serotoninergic (5-HT) system, mainly regulated by 5-HT(1A) autoreceptors in the dorsal raphe nucleus. 5-HT(1A) autoreceptor desensitization induced by chronic 5-HT reuptake inactivation has been associated with a decrease in ethanol intake in mice. We investigated here whether, conversely, chronic ethanol intake could induce 5-HT(1A) autoreceptor supersensitivity, thereby contributing to the maintenance of high ethanol consumption. C57BL/6J mice were subjected to a progressive ethanol intake procedure in a free-choice paradigm (3-10% ethanol versus tap water; 21 days) and 5-HT(1A) autoreceptor functional state was assessed using different approaches. Acute administration of the 5-HT(1A) receptor agonist ipsapirone decreased the rate of tryptophan hydroxylation in striatum, and this effect was significantly larger (+75%) in mice that drank ethanol than in those drinking water. Furthermore, ethanol intake produced both an increased potency (+45%) of ipsapirone to inhibit the firing of 5-HT neurons, and a raise (+35%) in 5-HT(1A) autoreceptor-mediated stimulation of [(35)S]GTP-gamma-S binding in the dorsal raphe nucleus. These data showed that chronic voluntary ethanol intake in C57BL/6J mice induced 5-HT(1A) autoreceptor supersensitivity, at the origin of a 5-HT neurotransmission deficit, which might be causally related to the addictive effects of ethanol intake.
Notes:
2007
 
DOI   
PMID 
José Manuel Trigo, Thibault Renoir, Laurence Lanfumey, Michel Hamon, Klaus-Peter Lesch, Patricia Robledo, Rafael Maldonado (2007)  3,4-methylenedioxymethamphetamine self-administration is abolished in serotonin transporter knockout mice.   Biol Psychiatry 62: 6. 669-679 Sep  
Abstract: BACKGROUND: The neurobiological mechanism underlying the reinforcing effects of 3,4-methylenedioxymethamphetamine (MDMA) remains unclear. The aim of the present study was to determine the contribution of the serotonin transporter (SERT) in MDMA self-administration behavior by using knockout (KO) mice deficient in SERT. METHODS: Knockout mice and wild-type (WT) littermates were trained to acquire intravenous self-administration of MDMA (0, .03, .06, .125, and .25 mg/kg/infusion) on a fixed ratio 1 (FR1) schedule of reinforcement. Additional groups of mice were trained to obtain food and water to rule out operant responding impairments. Microdialysis studies were performed to evaluate dopamine (DA) and serotonin (5-HT) extracellular levels in the nucleus accumbens (NAC) and prefrontal cortex (PFC), respectively, after acute MDMA (10 mg/kg). RESULTS: None of the MDMA doses tested maintained intravenous self-administration in KO animals, whereas WT mice acquired responding for MDMA. Acquisition of operant responding for food and water was delayed in KO mice, but no differences between genotypes were observed on the last day of training. MDMA increased DA extracellular levels to a similar extent in the NAC of WT and KO mice. Conversely, extracellular concentrations of 5-HT in the PFC were increased following MDMA only in WT mice. CONCLUSIONS: These findings provide evidence for the specific involvement of SERT in MDMA reinforcing properties.
Notes:
Powered by publicationslist.org.