hosted by
publicationslist.org
    

Franca Tommasi


tommasi@botanica.uniba.it

Journal articles

2010
M P Ippolito, C Fasciano, L d'Aquino, M Morgana, F Tommasi (2010)  Responses of antioxidant systems after exposition to rare earths and their role in chilling stress in common duckweed (Lemna minor L.): a defensive weapon or a boomerang?   Arch Environ Contam Toxicol 58: 1. 42-52 Jan  
Abstract: Extensive agriculture application of rare earth elements (REEs) in Far East countries might cause spreading of these metals in aquatic and terrestrial ecosystems, thus inducing a growing concern about their environmental impact. In this work the effects of a mix of different REE nitrate (RE) and of lanthanum nitrate (LA) on catalase and antioxidant systems involved in the ascorbate-glutathione cycle were investigated in common duckweed Lemna minor L. The results indicated that L. minor shows an overall good tolerance to the presence of REEs in the media. Treatments at concentrations up to 5 mM RE and 5 mM LA did not cause either visible symptoms on plants or significant effects on reactive oxygen species (ROS) production, chlorophyll content, and lipid peroxidation. Toxic effects were observed after 5 days of exposition to 10 mM RE and 10 mM LA. A remarkable increase in glutathione content as well as in enzymatic antioxidants was observed before the appearance of the stress symptoms in treated plants. Duckweed plants pretreated with RE and LA were also exposed to chilling stress to verify whether antioxidants variations induced by RE and LA improve plant resistance to the chilling stress. In pretreated plants, a decrease in ascorbate and glutathione redox state and in chlorophyll content and an increase in lipid peroxidation and ROS production levels were observed. The use of antioxidant levels as a stress marker for monitoring REE toxicity in aquatic ecosystems by means of common duckweed is discussed.
Notes:
2009
d'Aquino Luigi, Maria Concetta de Pinto, Luca Nardi, Massimo Morgana, Franca Tommasi (2009)  Effect of some light rare earth elements on seed germination, seedling growth and antioxidant metabolism in Triticum durum.   Chemosphere 75: 7. 900-905 May  
Abstract: Rare earth elements (REEs) enriched fertilizers have been commonly used in China since the 1980s, thus inducing a growing concern about their environmental impact in agriculture. In this work, the effect of some light REEs nitrate mixture and La(3+) nitrate on seed germination, seedling growth and antioxidant metabolism in Triticum durum was investigated with the aim of clarifying the potential benefits or damages of REEs on plants. Seed pre-soaking for 8 h with La(3+) and REEs nitrate inhibited seed germination at low concentrations (0.01 mM and 0.1 mM), while pre-soaking for 2 and 4 h already inhibited seed germination when higher concentrations (1 mM and 10 mM) of La(3+) and REEs nitrate were used. La(3+) and REEs nitrate treatment also affected seedling growth. Root growth was enhanced and inhibited at low and high concentrations, respectively. Shoot growth was inhibited by La(3+) and REEs nitrate at all tested concentrations after 12 d of treatments. Enzymatic and non enzymatic antioxidants were differently affected by La(3+) and REEs nitrate and their behaviour changed also depending on the plant organ. In roots La(3+) and REEs nitrate treatments induced an increase in ascorbate (ASC) and glutathione (GSH) contents. In shoots only La(3+) nitrate induced an increase in the ASC content whereas GSH decreased following both La(3+) and REEs nitrate treatments. An increase in ASC peroxidase activity was observed in shoots and roots, while catalase did not change in roots and slightly decreased in shoots. The possible role of the increase in some antioxidants as indicators of stress caused by lanthanide treatments is discussed.
Notes:
2008
Annalisa Paradiso, Rosalia Berardino, Maria C de Pinto, Luigi Sanità di Toppi, Maria M Storelli, Franca Tommasi, Laura De Gara (2008)  Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants.   Plant Cell Physiol 49: 3. 362-374 Mar  
Abstract: Durum wheat plants (Triticum durum cv Creso) were grown in the presence of cadmium (0-40 microM) and analysed after 3 and 7 d for their growth, oxidative stress markers, phytochelatins, and enzymes and metabolites of the ascorbate (ASC)-glutathione (GSH) cycle. Cd exposure produced a dose-dependent inhibition of growth in both roots and leaves. Lipid peroxidation, protein oxidation and the decrease in the ascorbate redox state indicate the presence of oxidative stress in the roots, where H2O2 overproduction and phytochelatin synthesis also occurred. The activity of the ASC-GSH cycle enzymes significantly increased in roots. Consistently, a dose-dependent accumulation of Cd was evident in these organs. On the other hand, no oxidative stress symptoms or phytochelatin synthesis occurred in the leaves; where, at least during the time of our analysis, the levels of Cd remained irrelevant. In spite of this, enzymes of the ASC-GSH cycle significantly increased their activity in the leaves. When ASC biosynthesis was enhanced, by feeding plants with its last precursor, L-galactono-gamma-lactone (GL), Cd uptake was not affected. On the other hand, the oxidative stress induced in the roots by the heavy metal was alleviated. GL treatment also inhibited the Cd-dependent phytochelatin biosynthesis. These results suggest that different strategies can successfully cope with heavy metal toxicity. The changes that occurred in the ASC-GSH cycle enzymes of the leaves also suggest that the whole plant improved its antioxidant defense, even in those parts which had not yet been reached by Cd. This precocious increase in the enzymes of the ASC-GSH cycle further highlight the tight regulation and the relevance of this cycle in the defense against heavy metals.
Notes:
2006
Franca Tommasi, Costantino Paciolla, Maria Concetta de Pinto, Laura De Gara (2006)  Effects of storage temperature on viability, germination and antioxidant metabolism in Ginkgo biloba L. seeds.   Plant Physiol Biochem 44: 5-6. 359-368 May/Jun  
Abstract: The behaviour of the Ginkgo biloba L. seeds was studied during storage at 4 and 25 degrees C. When stored at 25 degrees C, all the seeds died in 6 months. Cold temperatures preserved seed tissue viability for 1 year but did not preserve their capability to germinate, since such capability decreased after 6 months. A significant increase in lipid peroxidation occurred in the seed both in the embryo and in the endosperm. During storage a progressive deterioration of the endosperm tissues was evident. The two major water soluble antioxidants, ascorbate (ASC) and glutathione (GSH), showed different behaviour in the two conditions of storage and in the two main structures of the seed, the embryo and the endosperm. The ASC content of embryos and endosperms remained quite unchanged in the first 9 months at 4 degrees C, then increased. At 25 degrees C a significant decrease in the ASC content in the embryos was evident, whereas it remained more stable in the endosperm. The GSH pool decreased at both storage temperatures in the embryos. As far as the ASC-GSH redox enzymes are concerned, their activities decreased with storage, but changes appeared to be time-dependent more than temperature-dependent, with the exception of the endosperm ascorbate free radical (AFR) reductase (EC 1.6.5.4), the activity of which rapidly decreased at 25 degrees C. Therefore overall the antioxidant enzymes were scarcely regulated and unable to counteract oxidative stress occurring during the long-term storage.
Notes:
2002
Maria Concetta de Pinto, Franca Tommasi, Laura De Gara (2002)  Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells.   Plant Physiol 130: 2. 698-708 Oct  
Abstract: Nitric oxide (NO) has been postulated to be required, together with reactive oxygen species (ROS), for the activation of the hypersensitive reaction, a defense response induced in the noncompatible plant-pathogen interaction. However, its involvement in activating programmed cell death (PCD) in plant cells has been questioned. In this paper, the involvement of the cellular antioxidant metabolism in the signal transduction triggered by these bioactive molecules has been investigated. NO and ROS levels were singularly or simultaneously increased in tobacco (Nicotiana tabacum cv Bright-Yellow 2) cells by the addition to the culture medium of NO and/or ROS generators. The individual increase in NO or ROS had different effects on the studied parameters than the simultaneous increase in the two reactive species. NO generation did not cause an increase in phenylalanine ammonia-lyase (PAL) activity or induction of cellular death. It only induced minor changes in ascorbate (ASC) and glutathione (GSH) metabolisms. An increase in ROS induced oxidative stress in the cells, causing an oxidation of the ASC and GSH redox pairs; however, it had no effect on PAL activity and did not induce cell death when it was generated at low concentrations. In contrast, the simultaneous increase of NO and ROS activated a process of death with the typical cytological and biochemical features of hypersensitive PCD and a remarkable rise in PAL activity. Under the simultaneous generation of NO and ROS, the cellular antioxidant capabilities were also suppressed. The involvement of ASC and GSH as part of the transduction pathway leading to PCD is discussed.
Notes:
2001
F Tommasi, C Paciolla, M C de Pinto, L De Gara (2001)  A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds.   J Exp Bot 52: 361. 1647-1654 Aug  
Abstract: The ascorbate and glutathione systems have been studied during the first stages of germination in orthodox seeds of the gymnosperm Pinus pinea L. (pine). The results indicate that remarkable changes in the content and redox balance of these metabolites occur in both the embryo and endosperm; even if with different patterns for the two redox pairs. Dry seeds are devoid of the ascorbate reduced form (ASC) and contain only dehydroascorbic acid (DHA). By contrast, glutathione is present both in the reduced (GSH) and in the oxidized (GSSG) forms. During imbibition the increase in ASC seems to be mainly caused by the reactivation of its biosynthesis. On the other hand, the GSH rise occurring during the first 24 h seems to be largely due to GSSG reduction, even if GSH biosynthesis is still active in the seeds. The enzymes of the ascorbate--glutathione cycle also change during germination, but in different ways. ASC peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2) activities progressively rise both in the embryo and in endosperm. These changes are probably required for counteracting production of reactive oxygen species caused by recovery of oxidative metabolism. The two enzymes involved in the ascorbate recycling, ascorbate free radical (AFR) reductase (EC 1.6.5.4) and DHA reductase (EC 1.8.5.1), show different behaviour: the DHA reductase activity decreases, while that of AFR reductase remains unchanged. The relationship between ascorbate and glutathione metabolism and their relevance in the germination of orthodox seeds are also discussed.
Notes:
1995
1992
O Arrigoni, L De Gara, F Tommasi, R Liso (1992)  Changes in the Ascorbate System during Seed Development of Vicia faba L.   Plant Physiol 99: 1. 235-238 May  
Abstract: Large changes occur in the ascorbate system during the development of Vicia faba seed and these appear closely related to what are generally considered to be the three stages of embryogenesis. During the first stage, characterized by embryonic cells with high mitotic activity, the ascorbic acid/dehydroascorbic acid ratio is about 7, whereas in the following stage, characterized by rapid cell elongation (stage 2), it is lower than 1. The different ascorbic/dehydroascorbic ratio may be correlated with the level of ascorbate free radical reductase activity, which is high in stage 1 and lower in stage 2. Ascorbate peroxidase activity is high and remains constant throughout stages 1 and 2, but it decreases when the water content of the seed begins to decline (stage 3). In the dry seed, the enzyme disappears together with ascorbic acid. Ascorbate peroxidase activity is observed to be 10 times higher than that of catalase, suggesting that ascorbate peroxidase, rather than catalase, is utilized in scavenging the H(2)O(2) produced in the cell metabolism. There is no ascorbate oxidase in the seed of V. faba. V. faba seeds acquire the capability to synthesize ascorbic acid only after 30 days from anthesis, i.e. shortly before the onset of seed desiccation. This suggests that (a) the young seed is furnished with ascorbic acid by the parent plant throughout the period of intense growth, and (b) it is necessary for the seed to be endowed with the ascorbic acid biosynthetic system before entering the resting state so that the seed can promptly synthesize the ascorbic acid needed to reestablish metabolic activity when germination starts.
Notes:
1990
F Tommasi, L De Gara (1990)  [Comparison of presence of ascorbic acid and the appearance of ascorbate peroxidase activity in embryos of Avena sativa L].   Boll Soc Ital Biol Sper 66: 4. 357-364 Apr  
Abstract: Avena sativa L. grains are devoid of ascorbic acid (AA) and of oxidative enzymes (AA oxidase and AA peroxidase), while both reducing enzymes (AFR reductase and DHA reductase) are present. AA biosynthesis in the embryos starts after 12-14 hours of germination and at the same time AA peroxidase activity is detectable. During the following 14 hours the AA peroxidase activity rises up to 28 nmoles/AA oxidated/min/mg/prot. Incubation of Avena embryos with GL (the last precursor of AA according to the Isherwood biosynthetic pathway), results in both earlier AA biosynthesis and enhanced AA peroxidase activity. A 4 hour treatment is enough to induce AA synthesis and AA peroxidase elicitation. These data suggest that the development of AA peroxidase activity is controlled by AA, but they are not sufficient to clarify how that happens. Probably AA induces the synthesis of specific m-RNAs or activates enzymic precursors present in the embryos but still not working.
Notes:
L De Gara, F Tommasi (1990)  Further researches upon the inhibiting action of lycorine on ascorbic acid biosynthesis.   Boll Soc Ital Biol Sper 66: 10. 953-960 Oct  
Abstract: Lycorine, an alkaloid extracted from Amarillidaceae, strongly inhibits the "in vivo" conversion of galactono-gamma-lactone to ascorbic acid. Lycorine seems to act as a non-competitive inhibitor on galactono-gamma-lactone oxidase, because the alkaloid rapidly forms a stable bound with the enzyme. In fact, a short incubation period with 50 microM lycorine gets a high inhibitory effect that persists when the alkaloid is removed from the incubation medium. Considering that lycorine induces scurvy-like symptoms in ascorbic acid-synthesising animals, it is reasonable to suppose that in both plants and animals lycorine inhibits the last step in the biosynthetic pathway leading from sugar to ascorbate.
Notes:
1989
L De Gara, F Tommasi, R Liso, O Arrigoni (1989)  Ascorbic acid as a factor controlling "in vivo" its biosynthetic pathway.   Boll Soc Ital Biol Sper 65: 10. 959-965 Oct  
Abstract: The capacity of ascorbic acid biosynthesis in potato tuber tissue is closely correlated with the ascorbic acid content of the cells: the lower the endogenous content of ascorbic acid, the greater its biosynthesis. At the highest level of ascorbic acid found in the cells, the biosynthetic capacity is virtually zero. In these conditions, adding glucose (the first precursor of ascorbic acid) has no effect whatsoever, whereas adding galactono-gamma-lactone (the last precursor) induces a high rate of ascorbic acid synthesis. It is suggested that AA biosynthesis is subject to a regulatory mechanism "in vivo" which controls an initial step in the biosynthetic pathway. The last step in this pathway, catalyzed by galactone oxidase, is never blocked and, moreover, its activity is greater than that of the preceding steps.
Notes:
1987
 
Abstract:
Notes:
 
Abstract:
Notes:
 
Abstract:
Notes:
Powered by PublicationsList.org.