hosted by
publicationslist.org
    

Yangming Ou


ouya@seas.upenn.edu

Journal articles

2011
Yangming Ou, Aristeidis Sotiras, Nikos Paragios, Christos Davatzikos (2011)  DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting.   Med Image Anal 15: 4. 622-639 Aug  
Abstract: A general-purpose deformable registration algorithm referred to as "DRAMMS" is presented in this paper. DRAMMS bridges the gap between the traditional voxel-wise methods and landmark/feature-based methods with primarily two contributions. First, DRAMMS renders each voxel relatively distinctively identifiable by a rich set of attributes, therefore largely reducing matching ambiguities. In particular, a set of multi-scale and multi-orientation Gabor attributes are extracted and the optimal components are selected, so that they form a highly distinctive morphological signature reflecting the anatomical and geometric context around each voxel. Moreover, the way in which the optimal Gabor attributes are constructed is independent of the underlying image modalities or contents, which renders DRAMMS generally applicable to diverse registration tasks. A second contribution of DRAMMS is that it modulates the registration by assigning higher weights to those voxels having higher ability to establish unique (hence reliable) correspondences across images, therefore reducing the negative impact of those regions that are less capable of finding correspondences (such as outlier regions). A continuously-valued weighting function named "mutual-saliency" is developed to reflect the matching uniqueness between a pair of voxels implied by the tentative transformation. As a result, voxels do not contribute equally as in most voxel-wise methods, nor in isolation as in landmark/feature-based methods. Instead, they contribute according to the continuously-valued mutual-saliency map, which dynamically evolves during the registration process. Experiments in simulated images, inter-subject images, single-/multi-modality images, from brain, heart, and prostate have demonstrated the general applicability and the accuracy of DRAMMS.
Notes:
2010
Aristeidis Sotiras, Yangming Ou, Ben Glocker, Christos Davatzikos, Nikos Paragios (2010)  Simultaneous geometric--iconic registration.   Med Image Comput Comput Assist Interv 13: Pt 2. 676-683  
Abstract: In this paper, we introduce a novel approach to bridge the gap between the landmark-based and the iconic-based voxel-wise registration methods. The registration problem is formulated with the use of Markov Random Field theory resulting in a discrete objective function consisting of thee parts. The first part of the energy accounts for the iconic-based volumetric registration problem while the second one for establishing geometrically meaningful correspondences by optimizing over a set of automatically generated mutually salient candidate pairs of points. The last part of the energy penalizes locally the difference between the dense deformation field due to the iconic-based registration and the implied displacements due to the obtained correspondences. Promising results in real MR brain data demonstrate the potentials of our approach.
Notes:
2009
Yangming Ou, Dinggang Shen, Jianchao Zeng, Leon Sun, Judd Moul, Christos Davatzikos (2009)  Sampling the spatial patterns of cancer: optimized biopsy procedures for estimating prostate cancer volume and Gleason Score.   Med Image Anal 13: 4. 609-620 Aug  
Abstract: Prostate biopsy is the current gold-standard procedure for prostate cancer diagnosis. Existing prostate biopsy procedures have been mostly focusing on detecting cancer presence. However, they often ignore the potential use of biopsy to estimate cancer volume (CV) and Gleason Score (GS, a cancer grade descriptor), the two surrogate markers for cancer aggressiveness and the two crucial factors for treatment planning. To fill up this vacancy, this paper assumes and demonstrates that, by optimally sampling the spatial patterns of cancer, biopsy procedures can be specifically designed for estimating CV and GS. Our approach combines image analysis and machine learning tools in an atlas-based population study that consists of three steps. First, the spatial distributions of cancer in a patient population are learned, by constructing statistical atlases from histological images of prostate specimens with known cancer ground truths. Then, the optimal biopsy locations are determined in a feature selection formulation, so that biopsy outcomes (either cancer presence or absence) at those locations could be used to differentiate, at the best rate, between the existing specimens having different (high vs. low) CV/GS values. Finally, the optimized biopsy locations are utilized to estimate whether a new-coming prostate cancer patient has high or low CV/GS values, based on a binary classification formulation. The estimation accuracy and the generalization ability are evaluated by the classification rates and the associated receiver-operating-characteristic (ROC) curves in cross validations. The optimized biopsy procedures are also designed to be robust to the almost inevitable needle displacement errors in clinical practice, and are found to be robust to variations in the optimization parameters as well as the training populations.
Notes:
Yangming Ou, Christos Davatzikos (2009)  DRAMMS: deformable registration via attribute matching and mutual-saliency weighting.   Inf Process Med Imaging 21: 50-62  
Abstract: A general-purpose deformable registration algorithm referred to as "DRAMMS" is presented in this paper. DRAMMS adds to the literature of registration methods that bridge between the traditional voxel-wise methods and landmark/feature-based methods. In particular, DRAMMS extracts Gabor attributes at each voxel and selects the optimal components, so that they form a highly distinctive morphological signature reflecting the anatomical context around each voxel in a multi-scale and multi-resolution fashion. Compared with intensity or mutual-information based methods, the high-dimensional optimal Gabor attributes render different anatomical regions relatively distinctively identifiable and therefore help establish more accurate and reliable correspondence. Moreover, the optimal Gabor attribute vector is constructed in a way that generalizes well, i.e., it can be applied to different registration tasks, regardless of the image contents under registration. A second characteristic of DRAMMS is that it is based on a cost function that weights different voxel pairs according to a metric referred to as "mutual-saliency", which reflects the uniqueness (reliability) of anatomical correspondences implied by the tentative transformation. As a result, image voxels do not contribute equally to the optimization process, as in most voxel-wise methods, or in a binary selection fashion, as in most landmark/feature-based methods. Instead, they contribute according to a continuously-valued mutual-saliency map, which is dynamically updated during the algorithm's evolution. The general applicability and accuracy of DRAMMS are demonstrated by experiments in simulated images, inter-subject images, single-/multi-modality images, and longitudinal images, from human and mouse brains, breast, heart, and prostate.
Notes:
2008
Ragini Verma, Evangelia I Zacharaki, Yangming Ou, Hongmin Cai, Sanjeev Chawla, Seung-Koo Lee, Elias R Melhem, Ronald Wolf, Christos Davatzikos (2008)  Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images.   Acad Radiol 15: 8. 966-977 Aug  
Abstract: Treatment of brain neoplasms can greatly benefit from better delineation of bulk neoplasm boundary and the extent and degree of more subtle neoplastic infiltration. Magnetic resonance imaging (MRI) is the primary imaging modality for evaluation before and after therapy, typically combining conventional sequences with more advanced techniques such as perfusion-weighted imaging and diffusion tensor imaging (DTI). The purpose of this study is to quantify the multiparametric imaging profile of neoplasms by integrating structural MRI and DTI via statistical image analysis methods to potentially capture complex and subtle tissue characteristics that are not obvious from any individual image or parameter.
Notes:
2007
Yiqiang Zhan, Yangming Ou, Michael Feldman, John Tomaszeweski, Christos Davatzikos, Dinggang Shen (2007)  Registering histologic and MR images of prostate for image-based cancer detection.   Acad Radiol 14: 11. 1367-1381 Nov  
Abstract: Needle biopsy is currently the only way to confirm prostate cancer. To increase prostate cancer diagnostic rate, needles are expected to be deployed at suspicious cancer locations. High-contrast magnetic resonance (MR) imaging provides a powerful tool for detecting suspicious cancerous tissues. To do this, MR appearances of cancerous tissue should be characterized and learned from a sufficient number of prostate MR images with known cancer information. However, ground-truth cancer information is only available in histologic images. Therefore it is necessary to warp ground-truth cancerous regions in histological images to MR images by a registration procedure. The objective of this article is to develop a registration technique for aligning histological and MR images of the same prostate.
Notes:
Powered by PublicationsList.org.