hosted by
publicationslist.org
    

Ziv Sandalon

Greater NY City Area
zsandalon@gmail.com
• Seasoned innovative scientist with 15 years of practical experience in research and development and research project management.
• Expert understanding of preclinical and nonclinical development including regulatory requirements for IND filing.
• Proven track record of delivering major contributions to basic research and pre-clinical applications; valued author and contributor to leading peer-reviewed journals and patents.
• Significant experience and proven ability to synthesize and integrate new concepts and information from a variety of therapeutic areas.
• Ability to work and make judgments independently and take initiative.
• Lead multidisciplinary teams, guide scientists and research associates, develop timelines and budgets for research programs. Identify project issues and propose solutions to achieve research goals.
• Self-motivated and goal-orientated with effective collaborative and communication skills.

• Areas of expertise:
Research Project Management • Cross-Functional Team Leadership • Problem-Solving • In-Vivo and In-Vitro Experiment Design & Execution • Small Molecule • Bio-Assay/Immunoassay/Cell Assay Design and Development • Immunology • Vaccine Design and Development • Translational Research • Molecular Biology & Virology • Analytical Methods • Gene Delivery • Ocular Disease • Inflammatory Disease • Disease Model in Small Animals • SOP •Drug Discovery and Development • Business Development.

Journal articles

2007
Ziv Sandalon, Elizabeth M Bruckheimer, Kurt H Lustig, Haim Burstein (2007)  Long-term suppression of experimental arthritis following intramuscular administration of a pseudotyped AAV2/1-TNFR:Fc Vector.   Mol Ther 15: 2. 264-269 Feb  
Abstract: We previously reported that administration of an adeno-associated virus 2 (AAV2) vector encoding a rat tumor necrosis factor (TNF) receptor-immunoglobulin Fc (TNFR:Fc) fusion gene to rats with streptococcal cell wall-induced arthritis resulted in suppression of joint inflammation and cartilage and bone destruction, as well as expression of joint proinflammatory cytokines. In this study, we used an alternate rat model of arthritis to compare the serum levels and duration of TNFR:Fc protein expression following intramuscular administration of pseudotyped AAV-TNFR:Fc vectors based on serotypes 1, 2, and 5. All three pseudotyped AAV-TNFR:Fc vectors led to sustained expression of serum TNFR:Fc protein for at least one year. Serum TNFR:Fc protein levels in rats administered intramuscularly with AAV2/1-TNFR:Fc vector were up to 100- and 10-fold higher than in rats administered the AAV2-TNFR:Fc or AAV2/5-TNFR:Fc vectors, respectively. A single intramuscular administration of AAV2/1-TNFR:Fc vector at vector doses ranging from 10(10) to 10(12) DNase-resistant particles (DRP) per animal, resulted in complete and long-term suppression of recurrent joint inflammation for at least 150 days. Our results establish a proof of concept for administration of an AAV2/1-TNFR:Fc vector to the muscle to achieve long-term, sustained and therapeutically relevant levels of TNFR:Fc protein to treat chronic systemic inflammatory joint diseases.
Notes:
2004
Ziv Sandalon, Elizabeth M Bruckheimer, Kurt H Lustig, Linda C Rogers, Richard W Peluso, Haim Burstein (2004)  Secretion of a TNFR:Fc fusion protein following pulmonary administration of pseudotyped adeno-associated virus vectors.   J Virol 78: 22. 12355-12365 Nov  
Abstract: This study evaluated and compared delivery of the tumor necrosis factor alpha receptor (TNFR)-immunoglobulin G1 (IgG1) Fc fusion (TNFR:Fc) gene to the lung by single and repeat administrations of multiple pseudotyped adeno-associated virus (AAV) vectors as a means for achieving systemic distribution of the soluble TNFR:Fc protein. A single endotracheal administration of AAV[2/5]cytomegalovirus (CMV)-TNFR:Fc vector (containing the AAV2 inverted terminal repeats and AAV5 capsid) to the rat lung resulted in long-term, high levels of serum TNFR:Fc protein that gradually declined over a period of 8 months. Endotracheal delivery of AAV[2/1]CMV-TNFR:Fc resulted in serum TNFR:Fc protein levels that were detectable for at least 4 months but were 10-fold lower than that of the AAV[2/5] vector. In contrast, secretion of the TNFR:Fc protein following pulmonary delivery of AAV[2/2]CMV-TNFR:Fc vector was very inefficient, and the protein was detected in the blood only when an airway epithelial cell-specific promoter, CC10, was substituted for the CMV enhancer/promoter to control transgene expression. In the context of AAV[2/5], the CC10 promoter was as efficient as CMV enhancer/promoter in generating similar levels of systemic TNFR:Fc protein, suggesting that this protein is secreted primarily from the airway epithelium. In mice, comparable long-term secretion of TNFR:Fc protein was demonstrated after AAV[2/2] and AAV[2/5] delivery, although the kinetics of transduction appeared to be different. All pseudotyped AAV vectors elicited serum anti-AAV capsid-neutralizing antibody responses, but these did not prevent lung transduction and efficient secretion of TNFR:Fc protein to the circulation following readministration with AAV[2/5]. These results highlight the potential utility of AAV vectors containing serotype 5 capsid to deliver and redeliver genes of secreted proteins to the lung to achieve long-term systemic protein expression.
Notes:
2003
Chava Kimchi-Sarfaty, Mili Arora, Ziv Sandalon, Ariella Oppenheim, Michael M Gottesman (2003)  High cloning capacity of in vitro packaged SV40 vectors with no SV40 virus sequences.   Hum Gene Ther 14: 2. 167-177 Jan  
Abstract: In vitro packaging of plasmid DNA using recombinant SV40 capsid proteins is a potentially useful procedure that overcomes some restrictions of the other SV40 systems such as the requirement for SV40 sequences and the limitation in size of DNA that can be packaged. The in vitro packaging system uses the four SV40 proteins (VP1, VP2, VP3, and agno) or VP1 only. The ability to confer drug resistance by three ABC transporter genes (MDR 1, MRP 1, or MXR) was determined using the surrogate fluorescent substrates rhodamine-123 or calcein AM and their specific inhibitors, or by using specific antibodies to the transporters to detect cell surface expression by fluorescence-activated cell sorter analysis (FACS). A green fluorescent protein plasmid (EGFP-C1) was also used to monitor gene transfer. The packaged plasmids ranged in size from 4.2 to 17.6 kb, and only slightly affected particle size as determined by electron microscopy. When 9.5 kb and larger plasmids were packaged using all SV40 proteins, MDR1 expression was decreased compared to VP1 alone. The size of the 15.2 kb DNA after packaging was the same as the original DNA. Packaging with SV40 capsid proteins in vitro does not require any SV40 sequences. Using either the MDR1 or the GFP gene we could demonstrate enhanced expression when cells were pretreated with phorbol 12-myristate 13-acetate (PMA) at low concentrations. Interferon-gamma did not alter expression. We conclude that in vitro packaging is more flexible then previously realized, permitting packaging of at least 17 kb plasmid DNA without the requirement for any viral sequences. This system combines efficient gene delivery of the SV40 viral vector with the presumed safety of nonviral vectors.
Notes:
2001
Z Sandalon, N E Fusenig, J McCutcheon, L B Taichman, J A Garlick (2001)  Suicide gene therapy for premalignant disease: a new strategy for the treatment of intraepithelial neoplasia.   Gene Ther 8: 3. 232-238 Feb  
Abstract: The potential of gene therapy to treat premalignant disease or recurrent cancer has not been investigated. The goal of the present investigation was to explore the efficacy of pro-drug-mediated, suicide gene therapy as a strategy to treat incipient neoplasia in stratified squamous epithelium. To test this strategy, a tissue model of premalignancy was generated by mixing normal human keratinocytes (NHK) that express the bacterial cytosine deaminase gene (CD) with premalignant keratinocytes which have been genetically marked with the bacterial gene for beta-galactosidase (II-4-beta-gal) in skin-like organotypic cultures. Preliminary studies in monolayer cultures demonstrated that CD-transduced NHK (NHK/CD) efficiently expressed the transgene and deaminated the pro-drug 5-fluorocytosine (5FC) to the toxic product 5-fluorouracil (5FU). The capacity of NHK/CD to kill II-4-beta-gal cells through bystander effect was assayed in both submerged culture and in the organotypic model of premalignancy. In submerged cultures, it was found that CD-mediated killing of II-4-beta-gal cells did not require cell-cell contact and that the LD(50) of 5FC for efficient bystander killing of II-4-beta-gal was 0.5 mM. When this concentration of pro-drug was used in organotypic cultures, a significant number of dysplastic II-4-beta-gal cells were eliminated from the tissue. Bystander killing of II-4-beta-gal cells was related to the number of NHK/CD present. These findings demonstrated that potentially malignant keratinocytes could be eliminated from a dysplastic tissue through activation of pro-drug and killing of adjacent cells through the bystander effect. By establishing an in vitro model to eliminate premalignant cells using suicide gene therapy, these studies provide a new approach for the treatment of incipient cancer as it develops, thereby preventing invasive disease.
Notes:
2000
Z Sandalon, D V Gnatenko, W F Bahou, P Hearing (2000)  Adeno-associated virus (AAV) Rep protein enhances the generation of a recombinant mini-adenovirus (Ad) utilizing an Ad/AAV hybrid virus.   J Virol 74: 22. 10381-10389 Nov  
Abstract: Mini-adenoviruses (mAd) deleted of all viral coding regions represent an emerging approach for transgene expression. We have exploited the unique features of the adeno-associated virus (AAV) terminal repeats within the context of an adenovirus-adeno-associated hybrid virus (Ad/AAV) as a strategy for rapid and efficient generation of mAd. Excision and generation of mAd from the parental Ad/AAV hybrid vector was achieved in 293 cells through recombination but without selection for mAd production. Analysis of mAd isolated from 293 cells indicated that mAd DNA exists as monomer and dimer forms within the recombinant viral capsid. Formation of recombinant mAd was significantly increased using an AAV Rep78- or Rep68-expressing cell line through Rep-mediated excision utilizing the AAV terminal repeat sequences present in the Ad/AAV hybrid virus genome. The mAd viruses were infectious and able to transfer functional gene to A549 and HeLa cells. This approach is rapid and efficient, thereby providing a simplified methodology for generating mAd with functional transducing capabilities.
Notes:
1997
Z Sandalon, A Oppenheim (1997)  Self-assembly and protein-protein interactions between the SV40 capsid proteins produced in insect cells.   Virology 237: 2. 414-421 Oct  
Abstract: Soluble SV40 capsid proteins were obtained by expression of the three late genes, VP1, VP2, and VP3, in Sf9 cells using baculovirus expression vectors. Coproduction of the capsid proteins VP1, VP2, and VP3 was achieved by infecting Sf9 cells with the three recombinant baculovirus species at equal multiplicities. All three proteins were found to be localized in the nuclear fraction. Electron microscopy of nuclear extracts of the infected cells showed an abundance of SV40-like capsid structures and heterogeneous aggregates of variable size, mostly 20-45 nm. Under the same staining conditions wild-type SV40 virions are 45 nm. The capsid-like particles sedimented in glycerol gradients similarly to authentic wild-type SV40 virions. Pentamers of the major capsid protein VP1 were also seen. Protein analysis on sucrose gradients demonstrated that the capsid-like particles can be disrupted by treatment with the reducing agent dithiothreitol and the calcium chelator EGTA. The capsid-like particles were found to be significantly less stable than SV40 virions and were partially stabilized by calcium ions. Understanding the complex interactions between the capsid proteins is important for the development of an efficient in vitro packaging system for SV40 virions and pseudovirions.
Notes:
Z Sandalon, N Dalyot-Herman, A B Oppenheim, A Oppenheim (1997)  In vitro assembly of SV40 virions and pseudovirions: vector development for gene therapy.   Hum Gene Ther 8: 7. 843-849 May  
Abstract: SV40 is an attractive potential vector with high-efficiency gene transfer into a wide variety of human tissues, including the bone marrow, a critical target organ for the cure of many diseases. In the present study, the three SV40 capsid proteins, VP1, VP2, and VP3, were produced in Spodoptera frugiperda (Sf9) insect cells. Their co-production led to spontaneous assembly of SV40-like particles. Nuclear extracts containing the three proteins were allowed to interact with purified SV40 DNA, or with plasmid DNA produced and purified from Escherichia coli. The experiments demonstrated a physical association between the DNA and capsid proteins, protection from DNase I digestion, and the formation of infectious particles. The results indicate that intact, supercoiled DNA is being packaged and transmitted into the target cells. The transmitted DNA is biologically functional in gene expression and replication. The process, which utilizes naked DNA, is not dependent on the SV40 packaging signal ses. The procedure allows packaging of plasmids significantly larger than SV40 and permits the inclusion of potent regulatory signals, such as beta-globin locus control region (LCR) elements. These studies are the first step in the development of purified, in vitro-constructed pseudovirions for experimental and medical use.
Notes:
G A Palumbo, N Yarom, A Gazit, Z Sandalon, M Baniyash, N Kleinberger-Doron, A Levitzki, D Ben-Yehuda (1997)  The tryphostin AG17 induces apoptosis and inhibition of cdk2 activity in a lymphoma cell line that overexpresses bcl-2.   Cancer Res 57: 12. 2434-2439 Jun  
Abstract: Tyrphostins are low molecular weight compounds that specifically inhibit protein tyrosine kinases. We studied the effects of tyrphostins on OCI-Ly8, a cell line derived from a patient with immunoblastic lymphoma that carries the t(14;18) translocation and overexpresses the B-cell lymphoma/leukemia-2 gene (bcl-2). To test the possibility that tyrphostins induce apoptosis in these cells, overcoming the protection rendered by bcl-2, we screened 16 tyrphostins representing different families at a concentration of 0.5-50 microM. We found that AG17 was the most potent in this regard. Cell cycle analysis demonstrated that AG17 induces arrest at the G1 phase followed by apoptosis with general reduction of the intracellular level of tyrosine-phosphorylated proteins. To further elucidate the mechanism of action of AG17, we investigated its effect on some of the key proteins that regulate the cell cycle. Bcl-2 and cdk2 protein levels were not altered with AG17, whereas cdk2 kinase activity, as well as p21 and p16 protein levels, were reduced markedly. These results suggest that the target of AG17 is inactivation of cdk2. Because lymphoma cells with the t(14;18) translocation and bcl-2 overexpression are resistant to chemotherapy, novel drugs selectively able to induce apoptosis in these cells could offer a new approach to the treatment of lymphoma patients.
Notes:
1994
A Oppenheim, M Siani, Z Sandalon, G Mengeritsky (1994)  Dynamics of the nucleoprotein structure of simian virus 40 regulatory region during viral development.   J Mol Biol 238: 4. 501-513 May  
Abstract: The regulatory region of SV40 is composed of multiple elements, including the origin of replication (ori), the encapsidation signal (ses) and the enhancer. Here, the structure of the chromatin and nucleoprotein complexes in a region encompassing ses and part of the enhancer was investigated in detail by in situ probing with DNase I. We have used a model experimental system based on plasmids which carry parts of the SV40 regulatory region. The results demonstrate that a specific nucleoprotein structure at the region is formed early after transfection. The overall structure is maintained throughout the viral life cycle. The observed DNase digestion pattern is consistent with the presence of a mixed population of viral minichromosomes with various, but not random, nucleosomal arrangements in that region. Specific modulations, which are associated with the various stages of the viral life cycle, are superimposed on the general structure. The most dramatic changes occur at nucleotides 34 and 113, located at both ends of ses and flanking the GC-box region. Some of the changes depend on the presence of viral gene product(s), probably a late (capsid) protein. The results further suggest that the condensed minichromosome within the viral particle assumes a highly specific configuration in this region. The nucleoprotein structure is sensitive to modifications of the primary nucleotide sequence and to flanking DNA elements. There is good correlation between distortions in the nucleoprotein structure and the inability of mutant plasmids to be packaged, substantiating the requirement for proper chromatin condensation in viral packaging.
Notes:
1992
A Oppenheim, Z Sandalon, A Peleg, O Shaul, S Nicolis, S Ottolenghi (1992)  A cis-acting DNA signal for encapsidation of simian virus 40.   J Virol 66: 9. 5320-5328 Sep  
Abstract: Encapsidation of simian virus 40 is a complex biological process involving DNA-protein and protein-protein interactions in the formation of a unique three-dimensional structure around the viral minichromosome. A pseudoviral system developed in our laboratory, in which the viral early and late gene products are supplied in trans (by helpers), was used to analyze the encapsidation process independent of viral gene expression. With this experimental system we have discovered a requirement for a specific DNA signal for encapsidation, ses (for simian virus 40 encapsidation signal).ses is present within a 200-bp DNA fragment, which includes, in addition to the viral origin of replication (ori), six GGGCGG repeats (GC boxes) and 26 bp of the enhancer element. Deletion of the GC boxes and the enhancer sequences almost abolished encapsidation, while DNA replication was only moderately decreased. The ability to encapsidate was not regained by reinserting a DNA fragment carrying ses in the sesdeleted plasmid 2 kbp away from the ori, suggesting that for encapsidation the two DNA elements have to be close to each other. These findings afford novel strategies for the investigation of viral encapsidation.
Notes:

Book chapters

1992

Patents

2005
2004
2000
Powered by PublicationsList.org.